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1 Note on this document
In order to run this code you obviously need Nim in your PATH as well as all packages, which are imported.
In addition you need ntangle in your path. With those in place, run:

1 ntangle axionMass.org
2 nim c -r axionMass.nim

and the code is extracted and run, regenerating all plots.

2 Calculation of axion mass range of a helioscope
For BabyIAXO it would be nice to know:

1. the upper axion mass range for usage with vacuum

2. the resonant axion mass for a specific helium density

Starting point for this discussion is the IAXO gas phase study by Biljana and Kresimir.
The coherence condition for axions is

qL < π (1)

where q =
m2

a

2Ea
(2)

with L the length of the magnetic field (20m for IAXO, 10m for BabyIAXO), ma the axion mass and Ea

the axion energy (taken from solar axion spectrum).
In the presence of a low pressure gas, the photon receives an effective mass mγ , resulting in a new q:

q =

∣∣∣∣∣m2
γ −m2

a

2Ea

∣∣∣∣∣ (3)

Thus, we first need some values for the effective photon mass in a low pressure gas, preferably helium.
From this we can see that coherence in the gas is restored if mγ = ma, q → 0 for ma → mγ . This

means that in those cases the energy of the incoming axion is irrelevant for the sensitivity!
In order to calculate some values, we’ll write some Nim code to calculate and plot the dependence of

ma on the gas pressure.
First we have to import some modules we’ll need:
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1 import sequtils, seqmath, ggplotnim, strformat, algorithm, nlopt, options, strutils

An approximation for the dependence of mγ on the surrounding gas, was found in: https://www.
sciencedirect.com/science/article/pii/S0370269302018221 and can be written as:

mγ =

√
4παne

me
(4)

where α is the fine structure constant, me the electronm mass and ne the electron number density.
However, this equation still has to be fixed regarding the units. The units as such are:

eV =

√
1

eVm3 (5)

We can fix this, by replacing the m^3 by their natural unit equivalents in eV: 1 eV^-1 == 1.97e-7 m
That is, replace the 1 / m^3 by 1.97e-7 eV^3, for a final equation:

mγ =

√
4παne · (1.97e− 7)3

me
(6)

A proc to calculate an effective mass from an electron number density is thus:

1 proc effPhotonMass(ne: float): float =
2 ## returns the effective photon mass for a given electron number density
3 const alpha = 1.0 / 137.0
4 const me = 511e3 # 511 keV
5 # note the 1.97e-7 cubed to account for the length scale in `ne`
6 result = sqrt( pow(1.97e-7, 3) * 4 * PI * alpha * ne / me )

This means we need to calculate the electron number density ne for a given gas. For practical reasons
it’s probably easier to calculate it from a molar density in mol / m3 for a gas (see here):

ne = Z ·NA · c (7)

where NA is the Avogadro constant (NA = 6.022e23mol−1) and c the molar density of the gas in mol
/ m^3 and Z appears since we have Z electrons per molecule in the gas.

1 proc numDensity(c: float): float =
2 ## converts a molar concentration in mol / m^3 to a number density
3 const Z = 2 # number of electron in helium atom
4 result = Z * 6.022e23 * c

The standard atomic weight of helium is Ar = 4.002602, resulting in a molar mass of M(He) =
4.002 602 g mol−1.

Given the ideal gas law:
PV = nRT (8)

with the pressure P , the gas volume V , the amount of gas in mol n, the universal gas constant R:
R = 8.314 J K−1 mol−1, and the temperature T .

So to calculate the molar gas amount from a pressure, volume and temperature:

1 proc molarAmount(p, vol, temp: float): float =
2 ## calculates the molar amount of gas given a certain pressure,
3 ## volume and temperature
4 ## the pressure is assumed in mbar
5 const gasConstant = 8.314 # joule K^-1 mol^-1
6 let pressure = p * 1e2 # pressure in Pa
7 result = pressure * vol / (gasConstant * temp)
8 #echo "Molar amount for P = ", pressure, " Pa is ", result
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We know the volume and temperature and want to calculate the dependency of ma on different
pressure values. Thus, we can calculate n for each pressure and insert it into the number density proc to
calculate the effective photon mass.

As mentioned above, coherence in the gas is restored if mγ = ma. So all we have to do is to calculate
mγ for different pressures and then we know the effective axion mass we’re sensitive to in BabyIAXO
given a certain helium pressure.

So calculate the effective photon mass for a given pressure in BabyIAXO:

1 proc babyIaxoEffMass(p: float): float =
2 ## calculates the effective photon (and thus axion mass) for BabyIAXO given
3 ## a certain helium pressure in the BabyIAXO magnet
4 const vol = 10.0 * (PI * pow(0.3, 2)) # 10m length, bore radius 30 cm
5 # UPDATE: IAXO will be run at 4.2 K instead of 1.7 K
6 # const temp = 1.7 # assume 1.7 K same as CAST
7 const temp = 4.2
8 once:
9 echo "BabyIAXO magnet volume is ", vol, " m^3"

10 echo "BabyIAXO magnet temperature is ", temp, " K"
11 let amountMol = molarAmount(p, vol, temp) # amount of gas in mol
12 let numPerMol = numDensity(amountMol / vol) # number of electrons per m^3
13 #echo "Num electrons per m^3 ", numPerMol
14 result = effPhotonMass(numPerMol)

All that is left to do then is to create a set of pressure values that we want to plot against and calculate
the sensitive axion mass for those values for BabyIAXO. Since we probably want to cover a log space,
create a helper proc logspace from linspace:

1 proc logspace(start, stop: float, num: int, base = 10.0): seq[float] =
2 ## generates evenly spaced points between start and stop in log space
3 let linear = linspace(start, stop, num)
4 result = linear.mapIt(pow(base, it))

So generate values and create a plot. Let’s write a proc to generate a plot given some mbar range
and a plot filename:

1 proc makePlot(pstart, pstop: float, fname: string, log = false) =
2 let pressures = logspace(pstart, pstop, 1000) # 1000 values from 1e-5 mbar to 500 mbar
3 let masses = pressures.mapIt(babyIaxoEffMass(it)) # corresponding masses
4 # convert both seqs to a dataframe
5 let df = seqsToDf({"P / mbar" : pressures, "m_a / eV" : masses})
6 let plt = ggplot(df, aes("P / mbar", "m_a / eV")) +
7 geom_line() +
8 ggtitle("Sensitive axion mass in eV depending on helium pressure in mbar")
9 if not log:

10 plt + ggsave(fname)
11 else:
12 plt + scale_x_log10() + scale_y_log10() + ggsave(fname)

First for a logspace from 1e-6 to 1e2 mbar:

1 makePlot(-6.0, 2.0, "axionMassesFullRange.pdf")

and now for a low pressure range:

1 makePlot(-6.0, -2.0, "axionMassesZoomed.pdf")

and finally as a log-log plot in the full range.

3



1 makePlot(-6.0, 2.0, "axionMassesLogLog.pdf", log = true)

These plots are shown in fig. 1 and 2 and the log-log plot shown in 3.
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Figure 1: Axion masses in eV depending on the pressure in BabyIAXO in mbar in the full range from
10× 10−6 mbar to 10× 102 mbar.
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Figure 2: Axion masses in eV depending on the pressure in BabyIAXO in mbar in a zoomed range from
10× 10−6 mbar to 10× 10−2 mbar.
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Figure 3: Axion masses in eV depending on the pressure in BabyIAXO in mbar in the full range from
10× 10−6 mbar to 10× 102 mbar as a log-log plot.
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2.1 Analytical formula for effective photon mass
UPDATE: updated to fix issues from 2.4.

We can easily derive an analytical expression for the above calculation, by simply inserting all equa-
tions into one another.

mγ =

√
(1.97× 10−7)34παZNa100 · P (mbar)

meRT
(9)

if the pressure is given in mbar (factor 100 accounts for that).
which after inserting all numbers and multiplying them gives the following expression with:

• Z = 2

• T = 4.2 K

• R = 8.314 J K^-1 mol^-1

• N_A = 6.022e23 mol^-1

• \alpha = 1 / 137

• m_e = 511,000 eV

which results in:
mγ = 1.940 81× 10−2 ·

√
4πP (mbar) (10)

Let’s define this as a function and check that the resulting values are actually the same as for the
above calculation:

1 proc analyticalCalc(p: float): float =
2 ## calculates the effective mass for a given pressure from a single equation
3 ## derived from inserting all above into one
4 result = 1.94081e-2 * sqrt(4 * PI * p )
5

6 block:
7 let pressures = logspace(-6.0, 2.0, 1000)
8 let massesNum = pressures.mapIt(babyIaxoEffMass(it))
9 let massesAna = pressures.mapIt(analyticalCalc(it))

10 #echo massesNum
11 #echo massesAna
12 func almostEqual(a, b: seq[float]): bool = zip(a, b).mapIt(abs(it[0] - it[1]) < 1e-5).allIt(it)
13 doAssert massesNum.almostEqual(massesAna)

Which is indeed the case (as the assertion holds during runtime).

2.2 Upper mass range for vacuum
Finally also calculate the mass range one is sensitive to, if the magnet is not filled with helium.

In those cases, the limit is just given by the coherence condition mentioned at the top of the file
qL < π. Using the boundary as the condition to find ma we have:

qL = π (11)
m2

a

2Ea
L = π (12)

ma =

√
π2Ea

L
(13)

where we again have to add a factor of 1.97e-7 m for the length scale L:

ma =

√
π2Ea · 1.97× 10−7

L
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Note that in this case the effective mass one is sensitive to is directly dependent on the axion’s energy,
in contrast to the resonant case in the presence of an effective photon mass.

So we can calculate the mass limit in dependence of the axion’s energy as:

1 proc vacuumMassLimit(energy: float, magnetLength = 10.0): float =
2 ## given an axion energy in keV, calculate the limit of coherence
3 ## for the vacuum case in BabyIAXO
4 # note the length scale 1.97e-7 to take into account the meter scale in
5 # babyIaxoLen
6 let babyIaxoLen = magnetLength / 1.97e-7 # length in "eV"
7 result = sqrt(PI * 2 * energy * 1e3 / babyIaxoLen) # convert energy to eV

So let’s also create a plot covering the interesting energy range from 0 to 10 keV:

1 let energies = linspace(0.0, 10.0 , 1000) # from 0 to 10 keV
2 let massLimits = energies.mapIt(vacuumMassLimit(it))
3 let df = seqsToDf({"E / keV" : energies, "m_a / eV" : massLimits})
4 ggplot(df, aes("E / keV", "m_a / eV")) +
5 geom_line() +
6 ggtitle("Sensitive axion mass limit in eV for BabyIAXO in vacuum run") +
7 ggsave("vacuumMassLimit.pdf")

Now cross check the value for the vacuum mass limit with the value calculated by Biljana and Kreso
for IAXO, which was m_a < 1.62e-2 eV for IAXO (length 20m) at an energy of 4.2 keV:

1 let iaxoLimit = vacuumMassLimit(4.2, 20.0)
2 func almostEqual(a, b: float, eps = 1e-3): bool = abs(a - b) < eps
3 doAssert iaxoLimit.almostEqual(1.61e-2) # value from IAXO gas phase study
4 echo "Full IAXO mass limit @ 4.2 keV = ", iaxoLimit, " eV"

And we see that this is indeed the case!
Compared with that the value of the vacuum limit at 4.2 keV for BabyIAXO is:

1 const babyIaxoVacuumMassLimit = vacuumMassLimit(4.2)
2 echo "BabyIAXO mass limit @ 4.2 keV = ", babyIaxoVacuumMassLimit, " eV"

2.3 Calculating axion conversion probability
Now we will try to calculate the axion conversion probability in Helium at a given gas density and
temperature.

The axion-photon conversion probability Pa→γ in general is given by:

Pa→γ =

(
gaγB

2

)2
1

q2 + Γ2/4

[
1 + e−ΓL − 2e−

ΓL
2 cos(qL)

]
, (14)

where Γ is the inverse absorption length for photons (or attenuation length).
Aside from Γ we have all values at hand. At the end we want to have Pa→γ as a function of

Pa→γ(Γ,ma), i.e. we pick a specific B and gaγ , set L and wish to evaluate the conversion probabiltiy
based on Γ (depends on the gas pressure) and the axion mass. That way we can calculate the conversion
probability FWHM at a given pressure.

Following Theodoro’s PhD thesis (see 3 below), the attenuation length can be calculated from:

Γ = ρ

(
µ

ρ

)
, (15)

where µ/ρ is the so called mass attenuation coefficient. The values for the mass attenuation coefficient are
tabulated, e.g. by NIST: https://physics.nist.gov/PhysRefData/XrayMassCoef/tab3.html Since
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Energy µ/ρ µen/ρ
MeV cm2 g−1 cm2 g−1

1.00000E-03 6.084E+01 6.045E+01
1.50000E-03 1.676E+01 1.638E+01
2.00000E-03 6.863E+00 6.503E+00
3.00000E-03 2.007E+00 1.681E+00
4.00000E-03 9.329E-01 6.379E-01
5.00000E-03 5.766E-01 3.061E-01
6.00000E-03 4.195E-01 1.671E-01
8.00000E-03 2.933E-01 6.446E-02
1.00000E-02 2.476E-01 3.260E-02
1.50000E-02 2.092E-01 1.246E-02
2.00000E-02 1.960E-01 9.410E-03
3.00000E-02 1.838E-01 1.003E-02
4.00000E-02 1.763E-01 1.190E-02
5.00000E-02 1.703E-01 1.375E-02
6.00000E-02 1.651E-01 1.544E-02
8.00000E-02 1.562E-01 1.826E-02
1.00000E-01 1.486E-01 2.047E-02
1.50000E-01 1.336E-01 2.424E-02
2.00000E-01 1.224E-01 2.647E-02
3.00000E-01 1.064E-01 2.868E-02
4.00000E-01 9.535E-02 2.951E-02
5.00000E-01 8.707E-02 2.971E-02
6.00000E-01 8.054E-02 2.959E-02
8.00000E-01 7.076E-02 2.890E-02

1.00000E+00 6.362E-02 2.797E-02
1.25000E+00 5.688E-02 2.674E-02
1.50000E+00 5.173E-02 2.555E-02
2.00000E+00 4.422E-02 2.343E-02
3.00000E+00 3.503E-02 2.019E-02
4.00000E+00 2.949E-02 1.790E-02
5.00000E+00 2.577E-02 1.622E-02
6.00000E+00 2.307E-02 1.493E-02
8.00000E+00 1.940E-02 1.308E-02
1.00000E+01 1.703E-02 1.183E-02
1.50000E+01 1.363E-02 9.948E-03
2.00000E+01 1.183E-02 8.914E-03

Table 1: Table from NIST of the mass attenuation length of photons in helium. The right most column
is the mass-energy absorption coefficient, which we do not care about here.
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we mainly care about 4He in the context of this document, we can take the helium entry straight from
https://physics.nist.gov/PhysRefData/XrayMassCoef/ElemTab/z02.html, which conveniently lists
these values in useful energy ranges, see tab. 1.

In order to evaluate the mass attenuation at any energy, we need an interpolation function. Conve-
niently Javier Galan (PhD thesis) fitted such a function for us already (taken from Theodoros’ thesis),

log
(
µ

ρ

)
(E) = 1.5832 + 5.9195e−0.353808E + 4.03598e−0.970557E (16)

We will now define this function in our Nim program and generate the datapoints for the interpolation
in our energy range we consider above:

1 proc logMassAttenuation(e: float): float =
2 ## calculates the logarithm of the mass attenuation coefficient for a given
3 ## energy `e` in `keV` and the result in `cm^2/g`
4 result = -1.5832 + 5.9195 * exp(-0.353808 * e) + 4.03598 * exp(-0.970557 * e)
5

6 let logMuOverRho = energies.mapIt(logMassAttenuation(it))
7 # now the non-log values
8 let muOverRho = logMuOverRho.mapIt(exp(it))

Before we can plot this together with the tabulated data, we have to parse the table above. The raw
data is also stored in mass_attenuation_nist_data.txt. We will now parse it into a dataframe and
then drop all values outside the range of the energies we consider:

1 const massAttenuationFile = "mass_attenuation_nist_data.txt"
2 # skip one line after header, second header line
3 var dfMuRhoTab = toDf(readCsv(massAttenuationFile, skipLines = 1, sep = ' ', header = "#"))
4 # convert MeV energy to keV
5 .mutate(f{"Energy" ~ `Energy` * 1000.0})
6 .filter(f{float: `Energy` >= energies.min and `Energy` <= energies.max})

which leaves us with the following table of values tab. 2:

Idx Energy / keV mu/rho muen/rho
0 1 60.84 60.45
1 1.5 16.76 16.38
2 2 6.863 6.503
3 3 2.007 1.681
4 4 0.9329 0.6379
5 5 0.5766 0.3061
6 6 0.4195 0.1671
7 8 0.2933 0.06446
8 10 0.2476 0.0326

Table 2: All mass attenuation coefficients (µ/ρ) in the range of our energies considered 0 keV to 10 keV

Now we can finally compare the interpolation function with the real coefficients and see if they actually
match:

1 # create df of interpolated values
2 let dfMuRhoInterp = seqsToDf({ "E / keV" : energies,
3 "mu/rho" : muOverRho,
4 "log(mu/rho)" : logMuOverRho})
5 # rename the columns of the tabulated values df and create a log column
6 dfMuRhoTab = dfMuRhoTab.rename(f{"E / keV" <- "Energy"})
7 .mutate(f{float: "log(mu/rho)" ~ ln(c"mu/rho")})
8 # build combined DF
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9 let dfMuRho = bind_rows([("Interpolation", dfMuRhoInterp),
10 ("NIST", dfMuRhoTab)],
11 id = "type")
12 echo dfMuRho
13 # create plot of log values
14 ggplot(dfMuRho, aes("E / keV", "log(mu/rho)", color = "type")) +
15 geom_line(data = dfMuRho.filter(f{`type` == "Interpolation"})) +
16 geom_point(data = dfMuRho.filter(f{`type` == "NIST"})) +
17 ggtitle("Mass attenuation coefficient interpolation and data") +
18 ggsave("log_mass_attenuation_function.pdf")
19

20 # and the plot of the raw mu/rho values
21 ggplot(dfMuRho, aes("E / keV", "mu/rho", color = "type")) +
22 geom_line(data = dfMuRho.filter(f{`type` == "Interpolation"})) +
23 geom_point(data = dfMuRho.filter(f{`type` == "NIST"})) +
24 scale_y_log10() +
25 ggtitle("Mass attenuation coefficient interpolation and data") +
26 ggsave("mass_attenuation_function.pdf")

The figure of the mass attenuation function (non-log data) is shown in fig. 4.
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Figure 4: Mass attenuation coefficient comparison of interpolation function with the tabulated data from
NIST for 4He.

Now all that remains is to put the inerpolation function to use, as it apparently correctly describes the
NIST data. The only sanity check left before we do that is to check whether the effective mass calculation
of Theodoros’ thesis matches with the function we obtained.

Our simplified formula ended up being:

mγ = 1.372 36× 10−2 ·
√
4πP (17)
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while according to equation 7.3:

mγ = 28.77

√
Z

A
ρ (18)

where for 4He Z = 2 and A ∼ 4 g mol−1.
The ideal gas law in molar form is:

P = ρ
R

M
T, (19)

where M is the molar mass of our gas. Since we assume it’s pure 4He, this is M = 4 g mol−1. However,
if we simply replace the pressure in our equation by this equation, the result will be still dependent both
on T , which is because equation 17 already includes our temperature of T = 4.2K (as well as R as a
matter of fact). Let’s fix that:

mγ = 1.372 36× 10−2 · 4.2 · 8.314
√

4πP

RT
(20)

mγ = 0.479 21

√
4πP

RT
. (21)

Now we can finally replace P :

mγ = 0.479 21

√
4πρRT

MRT
(22)

mγ = 0.479 21

√
4πρ

M
(23)

and inserting the molar mass of helium M(He) = 4.002 602 g mol−1 yields:

mγ = 0.8491
√
ρ (24)

and comparing that to eq. 18 by inserting Z and A:

mγ = 28.77

√
2

4.002602
ρ (25)

mγ = 20.336 85
√
ρ (26)

which, ehm does not match.
Why?
Will figure out the error later. For now continue on with the actual calculation of the conversion

probabiltiy.
If we take one of our effective mass calculations for granted for the moment, we can calculate the

probability as we defined it further above, eq. 14.

1 proc momentumTransfer(m_gamma, m_a: float, E_a = 4.2): float =
2 ## calculates the momentum transfer for a given effective photon
3 ## mass `m_gamma` and axion mass `m_a` at an axion energy of
4 ## 4.2 keV `E_a` (by default).
5 #const c = 299792458
6 result = abs((m_gamma * m_gamma - m_a * m_a) / (2 * E_a * 1000.0))
7

8 proc axionConversionProb(m_a, m_gamma, gamma: float, length = 10.0): float =
9 ## given an axion mass and an inverse absorption length

10 ## calculates the conversion probabilty with BabyIAXOs magnet
11 ## properties. Axion coupling constant taken to be `1` +1e-11+.
12 ## By default uses BabyIAXO length of `10m`
13 # both `g_agamma` and `B` only scale the absolute value `P`, does not matter
14 const g_agamma = 1.0 #1e-11
15 const B = 4.5 # T, actually don't know the real number right now
16 # convert length in `m` to `eV`
17 let L = length / 1.97e-7 # m
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18 let q = momentumTransfer(m_gamma, m_a)
19 let term1 = pow(g_agamma * B / 2.0, 2)
20 let term2 = 1.0 / (q * q + gamma * gamma / 4)
21 let term3 = 1.0 + exp(-gamma * L) - 2 * exp(-gamma * L / 2) * cos(q * L)
22 result = term1 * term2 * term3

Now all that is left to do is think up some reasonable numbers for the axion mass we want to investigate,
calculate the effective photon masses for all pressures and the mass attenuation values and we’re done.
Start with effective photon masses,

1 let pressures = logspace(-6.0, 2.0, 4) # take only few values for a start
2 let m_gammas = pressures.mapIt(babyIaxoEffMass(it))

now for the mass attenuations, we need to derive a density from the pressure values we have:

1 proc density(p: float, temp = 4.2): float =
2 ## returns the density of the gas for the given pressure.
3 ## The pressure is assumed in `mbar` and the temperature (in `K`).
4 ## The default temperature corresponds to BabyIAXO aim.
5 ## Returns the density in `g / cm^3`
6 const gasConstant = 8.314 # joule K^-1 mol^-1
7 const M = 4.002602 # g / mol
8 let pressure = p * 1e2 # pressure in Pa
9 # factor 1000 for conversion of M in g / mol to kg / mol

10 result = pressure * M / (gasConstant * temp * 1000.0)
11 # convert the result to g / cm^3 for use with mass attenuations
12 result = result / 1000.0

Let’s add a convenience proc to directly calculate the attentuation length from a pressure in mbar:

1 proc attenuationLength(p: float): float =
2 ## for a given pressure in `mbar` returns the attenuation length
3 ## `Γ` in units of `eV`.
4 # multiply by `100` to convert `Γ` from `1 / cm` to `1 / m`
5 # multiply by `1.97e-7` to convert `1 / m` to `1 / eV`
6 result = 1.97e-7 * 100.0 * density(p) * exp(logMassAttenuation(4.2))

So the densities are:

1 let densities = pressures.mapIt(density(it))

Let’s first calculate the Γ values for a fixed energy:

1 let gammas = densities.mapIt(it * exp(logMassAttenuation(4.2)))

For each of the (Γ, q) pairs we will generate one plot, similar to fig. 5.

To generate it we still need a reasonable guess for the axion mass of interest. We can essentially use
the effective photon mass as a baseline and generate N values around O(1%) of the nominal value. Let’s
try that:

1 proc genAxionConvPlot(gamma, m_gamma: float, nameSuffix = "",
2 start = 0.0, stop = 0.0, length = 10.0) =
3 ## generates a single axion conversion probabilit plot
4 # calculate reasonable `m_a` values
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Figure 5: Example of an axion conversion probability taken from the IAXO gas phase study.

5 echo "Gamma: ", gamma
6 echo "m_gamma: ", m_gamma
7 var m_a: seq[float]
8 if start != stop:
9 m_a = linspace(start, stop, 1000)

10 else:
11 m_a = linspace(m_gamma * 0.99, m_gamma * 1.01, 1000)
12

13 let qs = m_a.mapIt(momentumTransfer(m_gamma, it))
14 # plot momentum transfers by themselves
15 let dfMom = seqsToDf(m_a, qs)
16 ggplot(dfMom, aes("m_a", "qs")) +
17 geom_line() +
18 ggsave("momentumTransfers.pdf")
19

20 let prob = m_a.mapIt(axionConversionProb(it, m_gamma, gamma, length = length))
21 let df = seqsToDf({ "m_a / eV" : m_a,
22 "P_a->gamma" : prob })
23 echo df
24 #echo df.summarize(f{"P_a->gamma" ~ min("P_a->gamma")})
25 #echo df.pretty(-1)
26 ggplot(df, aes("m_a / eV", "P_a->gamma")) +
27 geom_line() +
28 ggtitle(&"Axion conversion probability for Γ = {gamma:.2e}, m_� = {m_gamma:.2e}") +
29 ggsave(&"axion_conversion_prob_{nameSuffix}.pdf")
30 if nameSuffix == "1":
31 writeFile("dfdata.txt", df.pretty(-1))

and call it for all values:

1 doAssert gammas.len == m_gammas.len
2 for i in 0 ..< gammas.len:
3 genAxionConvPlot(gammas[i], m_gammas[i], $i)
4 let dftest = seqsToDf({ "gammas" : gammas,
5 "m_gammas" : m_gammas })
6 ggplot(dftest, aes("gammas", "m_gammas")) +
7 geom_line() +
8 ggsave("test_gamma.pdf")

Which currently is plain wrong.
Let’s debug. UPDATE: see 2.4, the fixes from there were already applied to the code above.
To avoid any more mistakes, let’s write some tests to check whether we can reproduce first the two
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values we can read off from the IAXO gas phase study paper. Looking at both fig. 5 and the equivalent
for a pressure equivalent of 3bar at room temperature yields the following reference values, tab. 3.

We calculate the pressure corresponding to the room temperature pressures using the ideal gas law
again:

1 proc pressureAtTemp(p: float, T = 4.2, T2 = 293.0): float =
2 ## converts a given pressure `p` at `T` to an equivalent pressure at `T2`
3 result = p * T2 / T
4

5 let p1bar = pressureAtTemp(1000.0, 293, 4.2)
6 let p3bar = pressureAtTemp(3000.0, 293, 4.2)
7 echo "Pressure for equivalent of 1 bar @ 293 K ", p1bar
8 echo "Pressure for equivalent of 3 bar @ 293 K ", p3bar
9 let m_gamma_1bar = babyIaxoEffMass(p1bar)

10 let m_gamma_3bar = babyIaxoEffMass(p3bar)
11 echo "m_gamma for pressure equivalent of 1 bar @ 293 K ", m_gamma_1_bar
12 echo "m_gamma for pressure equivalent of 3 bar @ 293 K ", m_gamma_3_bar
13 doAssert almostEqual(m_gamma_1_bar, 0.26)
14 doAssert almostEqual(m_gamma_3_bar, 0.4483, eps = 1e-2)

Which yields the values shown in the table.

P @ 293K / bar P @ 4.2K / mbar mγ / eV
1.0 14.3345 0.26048
3.0 43.0034 0.45117

Table 3: Reference values extracted from the IAXO gas phase study paper.

Now we’ll generate the exact plots for the conversion probability for these values.

1 let gamma_1bar = attenuationLength(p1bar)
2 let gamma_3bar = attenuationLength(p3bar)
3 genAxionConvPlot(gamma_1bar, m_gamma_1bar, "1bar_equiv")#, 0.2593, 0.2616
4 genAxionConvPlot(gamma_3bar, m_gamma_3bar, "3bar_equiv")#, 0.4485, 0.4535
5 # and now for reference the IAXO (`20m`) plots
6 genAxionConvPlot(gamma_1bar, m_gamma_1bar, "1bar_equiv_20m", length = 20.0)
7 genAxionConvPlot(gamma_3bar, m_gamma_3bar, "3bar_equiv_20m", length = 20.0)

However the plot, see the example of the 1bar equivalent in fig. 20.
UPDATE: the reasons for the plot being broken are explained in 3.3 and in short have to do with

the units of different products being wrong, namely of Γ, L and (in a way) q. They have been fixed in
the code above. The broken plot has been moved to the mentioned section.

With the code now fixed, we can finally look at the correct axion conversion probability plots. First
for the 1bar equivalent in fig. 6 and for the 3bar equivalent in fig. 7. In the appendix in fig. 21 and 22
are the same plots for the full IAXO length of 20m.

Although we still have the more pronounced cos behavior in our conversion probability, at least the
widths of the peaks seem to match, as far as one can extract by eye from fig. 5.

In order to be able to determine the FWHM of the peaks (if we calculate the above curves for many
pressure values) we can’t simply fit a simple function to it and extract some sigma. While we can try to
fit a simple gaussian, I don’t expect it to fit very well, given the function of the conversion probability
eq. 14.

Let’s try it anyways for lack of a better way for now. We’ll add it to the genAxionConvPlot proc
above.
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Axion conversion probability for Γ = 2.72e-09, m_γ = 2.60e-01
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Figure 6: Example of the axion conversion probability at a pressure of P = 14.3345mbar (corresponds
to 1bar at room temperature). This roughly reproduces the plot of fig. 5, although we see the influence
of the cos term a lot more. The only difference is that this plot corresponds to the BabyIAXO length
of L = 10m instead fig. 5 L = 20m. For our IAXO equivalent plot see fig. 21 in the appendix. The
absolute value of the probability is arbitrary, since gaγ = 1 for this plot.
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Axion conversion probability for Γ = 8.15e-09, m_γ = 4.51e-01
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Figure 7: Example of the axion conversion probability at a pressure of P = 43.0034mbar (corresponds
to 3bar at room temperature) and a magnet length of 10m. For the IAXO equivalent plot see fig. 22 in
the appendix.
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1 import mpfit
2 proc gaussFit(p_ar: seq[float], x: float): float =
3 result = p_ar[0] * gauss(x = x, mean = p_ar[1], sigma = p_ar[2])
4

5 proc calcConvProbCurve(gamma, m_gamma, pressure: float, length = 10.0,
6 massRange = none[tuple[low, high: float]]()):
7 tuple[m_a, prob: seq[float]] =
8 var m_a: seq[float]
9 if massRange.isNone:

10 if pressure < 0.01:
11 echo "PRressure ", pressure
12 m_a = linspace(m_gamma * 0.2, m_gamma * 1.8, 1000)
13 else:
14 m_a = linspace(m_gamma * 0.5, m_gamma * 1.5, 1000)
15 else:
16 m_a = linspace(massRange.get.low, massRange.get.high, 1000)
17 let qs = m_a.mapIt(momentumTransfer(m_gamma, it))
18 let prob = m_a.mapIt(axionConversionProb(it, m_gamma, gamma, length = length))
19 result = (m_a: m_a, prob: prob)
20

21 proc fitToConvProb(gamma, m_gamma, pressure: float, nameSuffix = "",
22 length = 10.0, createPlot = true): (float, seq[float]) =
23 ## generates a single axion conversion probabilit plot
24 let (m_a, prob) = calcConvProbCurve(gamma, m_gamma, pressure, length)
25 let p0 = @[prob.max, m_a[prob.argmax], 0.02]
26 let (pRes, res) = fit(gaussFit, p0, m_a, prob, prob.mapIt(1.0))
27 #echoResult(pRes, res = res)
28 let probFit = m_a.mapIt(gaussFit(pRes, it))
29 if createPlot:
30 let df = seqsToDf({ "m_a / eV" : m_a,
31 "P_a->gamma" : prob,
32 "P_fit" : probFit })
33 #echo df
34 ggplot(df, aes("m_a / eV", "P_a->gamma")) +
35 geom_line() +
36 geom_line(aes(y = "P_fit", color = "Gaussian fit")) +
37 ggtitle(&"Gaussian fit to P_a->gamma at p = {pressure:.4f} mbar") +
38 ggsave(&"conv_prob_fit_{nameSuffix}.pdf")
39 result = (pressure, pRes)
40

41 let (drop, pRes1bar) = fitToConvProb(gamma_1bar, m_gamma_1bar, p1bar, "1bar")

If we ignore the code duplication we have right now cough, we can see from fig. 8 that a gaussian sort of
works, at least for the purpose of extracting a reasonable σ. But let’s not talk about our χ2/dof please
(hint ∼ 6.21× 1028).

In order to extract a FWHM, we simply have to take

FWMH = 2
√
2 ln(2)σ ≈ 2.355σ (27)

of our σ.
Let’s do that.

1 proc fwhm(sigma: float): float =
2 ## returns the FWHM of a gaussian for a `sigma`
3 result = 2 * sqrt(2 * ln(2.0)) * abs(sigma)
4 echo "FWHM @ 1bar room temperature = ", fwhm(pRes1bar[2])
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So the FWHM of the fit in fig. 8 is:

FWHM@1 bar ≈ 0.001 691 eV (28)

Gaussian fit to P_a->gamma at p = 14.3345 mbar
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Figure 8: Gaussian fit applied to the axion conversion probability. While the χ2 is beyond horrible, the
fit is reasonable to extract the FWHM.

Thus, finally get back to our logspace derivation of some pressures, calculate Pa→γ for each, apply
the fit and see where it leads us.

1 let pressuresFine = logspace(-6.0, 2.0, 1000)
2 let gammasFine = pressuresFine.mapIt(attenuationLength(it))
3 let mgammasFine = pressuresFine.mapIt(babyIaxoEffMass(it))
4 var fwhmFine: seq[float]
5 when true:
6 # NOTE: set to `true` if you want to recreate the fits and plots!
7 for i in 0 ..< pressuresFine.len:
8 let (p, pResI) = fitToConvProb(gammasFine[i], mgammasFine[i],
9 pressuresFine[i], &"{pressuresFine[i]:.6f}",

10 createPlot = true)
11 fwhmFine.add fwhm(pResI[2])

and now create the plot relating the pressure to the FWHM:

1 when true:
2 # NOTE: set to `true` if you want to redo these calculations
3 var dfFwhm = seqsToDf({ "Pressure / mbar" : pressuresFine,
4 "FWHM / eV" : fwhmFine })
5 dfFwhm = dfFwhm.mutate(f{float: "FWHM / eV" ~ abs(`FWHM / eV`)})
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6 ggplot(dfFwhm, aes("Pressure / mbar", "FWHM / eV")) +
7 geom_point() +
8 ylab(margin = 1.5) +
9 scale_y_log10() +

10 scale_x_log10() +
11 ggtitle("FWHM / eV of a->gamma probability depending on pressure / mbar") +
12 ggsave("fwhm_vs_pressure_full_loglog.pdf")
13 # and a subset filtered to above 0.01 mbar in linear
14 dfFwhm = dfFwhm.filter(f{float: `Pressure / mbar` > 0.01})
15 ggplot(dfFwhm, aes("Pressure / mbar", "FWHM / eV")) +
16 geom_point() +
17 scale_y_log10() +
18 ggtitle("FWHM / eV of a->gamma probability depending on pressure / mbar") +
19 ggsave("fwhm_vs_pressure_ylog.pdf")
20

21 let elements = pressuresFine.len
22 doAssert pressuresFine.len == elements
23 doAssert gammasFine.len == elements, " was " & $gammas.len
24 doAssert mgammasFine.len == elements, " was " & $mgammas.len
25 doAssert fwhmFine.len == elements, " was " & $fwhmFine.len
26

27 # finally write the data to a file
28 proc writeCsv(pressures, gammas, mgammas, fwhm: seq[float])
29 when true:
30 writeCsv(pressuresFine, gammasFine, mgammasFine, fwhmFine)

This gives us two plots. First in fig. 9 the full range from 1 × 10−6 mbar to 1 × 102 mbar in log-log.
We see that below ∼ 1×10−4 mbar the behavior changes significantly and probably the fit starts to break
down. But in those conditions we should be well in the coherent part of the phase space anyways. So
take that with a grain of salt. Keep in mind that these values are the cryogenic pressures, so ∼ 43mbar
already equate to rougly 3bar equivalent pressure at room temperature!

Then in fig. 10 we see the same data zoomed to all values above 0.01mbar. Here we see the curve
changes even faster than an exponential. Given the conversion probability itself already decays as an
exp−ΓL and the additional suppression of q in the denominator, this is to be expected I suppose. Or
maybe not quite? Since for one plot, i.e. one value in the FWHM plots the only changing values is q. So
it’s just a 1

x2 dependency? Well, if I had more time, we could fit, but not today…

For once I’m not going to append all of the gaussian fits to the conversion probabilities. Otherwise
this will have O(1000) pages…

One example of a very low pressure scenario is shown in fig. 11.

And let’s implement the writeCsv proc to store the results.

1 proc writeCsv(pressures, gammas, mgammas, fwhm: seq[float]) =
2 var f = open("fwhm_results.csv", fmWrite)
3 f.write("# Pressures / mbar\t Γ / eV\t m_� / eV & fwhm / eV\n")
4 let elements = pressures.len
5 var line = ""
6 for i in 0 ..< elements:
7 line = &"{pressures[i]},{gammas[i]},{mgammas[i]},{abs(fwhm[i])}\n"
8 f.write(line)
9 f.close()
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FWHM / eV of a->gamma probability depending on pressure / mbar
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Figure 9: FWHM in eV of the axion conversion probability Pa→γ depending on the 4He pressure inside
BabyIAXO in mbar. The full range from 1 × 10−6 mbar to 1 × 102 mbar at cryogenic temperatures is
shown. Below ∼ 1× 10−4 mbar the fit probably breaks.

20



FWHM / eV of a->gamma probability depending on pressure / mbar
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Figure 10: FWHM in eV of the axion conversion probability Pa→γ depending on the 4He pressure inside
BabyIAXO in mbar. The range is zoomed to 1× 10−2 mbar to 1× 102 mbar at cryogenic temperatures.
The curve seems to behave well in this range.
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Gaussian fit to P_a->gamma at p = 0.0001 mbar
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Figure 11: Example at which the gaussian fit fails at very low pressure. Even further below it’s just a
straight line with the dip.
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2.4 Find our error in the calculation
It seems like calculating from the alternative mγ calculation and putting in the pressure (derived by
ideal gas law) equivalent of 1bar at room temperature (yields 14.33mbar at 4.2K), matches with our
expectation from the gas study, mγ ≈ 0.261 eV.

1 echo "Room temp: ", pressures.mapIt(pressureAtTemp(it) / 1000.0)
2

3 proc m_gamma_alternative(p: float): float =
4 # gallard alternative m_gamma. Says 0.02, more exact is:
5 result = sqrt(0.01988 * p / 4.2)
6

7 let compPress = pressureAtTemp(1000, 293.0, 4.2)
8 echo "cryo pressure for 1 bar at room: ", compPress
9 # get m_a at compPress

10 echo "m_a @ 1 bar @ room temp: ", babyIaxoEffMass(compPress)
11 echo "m_a alt. @ 1 bar room temp ", m_gamma_alternative(compPress)
12 doAssert babyIaxoEffMass(compPress).almostEqual(m_gamma_alternative(compPress))

PV = nRT (29)

n =
m

M
(30)

PV =
m

M
RT (31)

P =
m

V

R

M
T (32)

P = ρ
R

M
T (33)

ρ =
PM

RT
(34)

And we know that these two are equivalent:

n = NAc (35)

n =
NA

M
ρ (36)

So this is the number density of molecules molecules with molar mass M . That means the number of
electrons is Z times larger! That’s where the factor of Z in equation 60 comes from!:

ne = Z
NA

M
ρ (37)

Then we can alternatively express this in terms of the pressure instead of density, via

ne = Z
NA

M

PM

RT
(38)

ne = Z
NAP

RT
(39)

(40)

which we can finally insert into the expression for mγ eq. 4 to get:

mγ =

√
4παZneP

RTme
(41)

which after fixing the units and making P be in mbar:

mγ =

√
4παZne(1.97× 10−7)3 · 100 · P (mbar)

RTme
(42)
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due to 100Pa = 1mbar. Inserting all known constants:

mγ =

√
0.019 88 · P (mbar)

T (K)
(43)

which is precisely equation 59.
Now let’s make sure we can similarly derive the equation from Theodoros’ thesis by inserting 60

instead:

mγ =

√
4παne

me
(44)

mγ =

√
4παZNAρ

Mme
(45)

Let’s again consider the units of this:

eV =

√
kg · mol

m3 · g · eV , (46)

based on the fact that we typically give the molar mass in g mol−1. Yet, for the NIST data about the
mass attenuation coefficient, it is more convenient, if we give our density not int kg/m3, but rather in
g/cm3, because the attenuation coefficients are also given in cm2/g. Which means we end up with the
following corrections:

mγ =

√
4παZNA · 1000 · 1000 · (1.97× 10−7)3ρ

Mme
(47)

mγ =

√
826.571Zρ

M
(48)

mγ = 28.75

√
Z

M
ρ [g/cm3] (49)

where one of the factors of 1000 is from the conversion of M to g mol−1 and the other from the conversion
of ρ to g/cm3.

This means we have finally proven the seemingly arbitrary relation of mγ .
TL;DR:

• we missed the factor Z in our initial calculation of the electron number density 7, because we forgot
that there’s Z electrons for each molecule apparently :P

• while trying to derive the equation for eq. 59 we were still missing a conversion from kg/m3 to
g/cm3 for the density.

2.5 Absorption of X-rays in helium
In general the absorption of X-rays in a medium is also governed by the Beer-Lambert law, which for a
uniform medium can be expressed via the attenuation length or the mass attenuation coefficient as:

I(d) = I0 exp
(
−µ

ρ
ρd

)
= I0 exp (−Γd) (50)

where µ
ρ is again the mass attenuation coefficient and Γ the inverse absorption length.

The former expression is preferable, since we already have the values from tab. 1 and the interpolation
eq. 16.

So for a given photon energy E we can calculate the X-ray flux after a traversed distance d:

1 proc intensitySuppression(energy, distance, pressure: float, temp = 293.15): float =
2 ## calculates the suppression factor of the intensity of X-rays
3 ## with `energy` (in keV) after `distance` (in `m`) at a helium `pressure`
4 ## (in `mbar`) and temperature of the gas of `temp` (in `K`).
5 ## By default assume room temperature for calc of beam line filled with

24

https://en.wikipedia.org/wiki/Beer%E2%80%93Lambert_law
https://en.wikipedia.org/wiki/Attenuation_length
https://de.wikipedia.org/wiki/Massenschw%C3%A4chungskoeffizient


6 ## gas.
7 let massAtt = exp(logMassAttenuation(energy))
8 # calculate density from pressure
9 let rho = density(pressure, temp)

10 # factor 100 is to convert `distance` to `cm` from `m`
11 result = exp(-massAtt * rho * distance * 100)

2.5.1 Absorption in beam line at room temp @ 1bar pressure

Assuming the BabyIAXO magnet is supposed to be filled with helium gas at room temperature (no cryo
for the bore and even heated to 293.15K), then we need to operate at pressures of O(1 bar). For a simple
(and thin!) window setup it could be a nice solution to consider filling the beamline (incl. telescope)
itself with helium at the same conditions. However, assuming a length of 5m this results in a suppression
of the intensity.

Let’s calculate how large that suppression is and check how much intensity is lost after 5m at
1000mbar and 293.15K for all energies 0 keV to 10 keV:

1 proc calcFilledBeamline(length: float, energies: seq[float],
2 toPlot = true): DataFrame =
3 ## calculates the X-ray suppression of a beamline filled with gas at
4 ## `1 bar`, `293.15 K` of `5 m` (default) length
5 # take intensity suppression as is, assumes incoming intensity is `1`
6 let p = 1000.0 # mbar
7 let intensities = energies.mapIt(intensitySuppression(it, length, p))
8 result = seqsToDf({ "E / keV" : energies,
9 "Transmission" : intensities })

10 if toPlot:
11 ggplot(result, aes("E / keV", "Transmission")) +
12 geom_line() +
13 ggtitle(&"Transmission after {length} m of He at 1 bar, 293.15 K") +
14 ggsave(&"transmission_beamline_he_{length}_m.pdf")
15

16 let df5m = calcFilledBeamline(5.0, energies)
17 let df7_5m = calcFilledBeamline(7.5, energies)
18 echo "\n\n\n"
19 echo df5m.tail(10)
20 echo df7_5m.tail(10)
21 echo "done\n\n\n"

The same plot is also generated for 7.5m. The plot for transmission after 5m is shown in fig. 12.

Finally we wish to create a combined plot of the transmissions of the 5m transmission, the 7.5m case,
a potential 10µm polypropylene (C3H6) window and the axion electron flux.

The transmission of the polypropylene window is calculated from http://henke.lbl.gov/optical_
constants/filter2.html and the data file is polypropylene_window_10micron.txt.

1 proc transmissionsPlusSpectrum =
2 ## creates a plot of the expected transmissions for filled beamlines,
3 ## the polypropylene window and the axion electron spectrum.
4 let polypropDf = toDf(readCsv("polypropylene_window_10micron.txt", sep = ' ', skipLines = 1,
5 header = "#"))
6 .mutate(f{float: "E / keV" ~ c"Energy/eV" / 1000.0})
7 .rename(f{"10 µm PP" <- "Transmission"})
8 # now using the `polyPropDf` energies, calculate the data frames for the He losses, so that
9 # we have the exact same energies and we can easily multiply them afterwards
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Transmission after 5.0 m of He at 1 bar, 293.15 K
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Figure 12: Transmission of X-rays after 5m of 4He at P = 1000mbar and T = 293.15K.

10 let energiesPP = polyPropDf["E / keV", float].toRawSeq
11 let df5m = calcFilledBeamline(5.0, energiesPP).rename(f{"5 m He" <- "Transmission"})
12 let df7_5m = calcFilledBeamline(7.5, energiesPP).rename(f{"7.5 m He" <- "Transmission"})
13 # do an ugly multi join
14 var dfPPHe = inner_join(polyPropDf, df5m, by = "E / keV").innerJoin(df7_5m, by = "E / keV")
15 # finally add polyProp * He
16 dfPPHe = dfPPHe.mutate(f{"5mHe+PP" ~ c"10 µm PP" * c"5 m He"},
17 f{"7.5mHe+PP" ~ c"10 µm PP" * c"7.5 m He"})
18 .gather(["10 µm PP", "5 m He", "5mHe+PP", "7.5 m He", "7.5mHe+PP"],
19 key = "Setup", value = "Transmission")
20 let gaeDf = toDf(readCsv("axion_gae_flux.dat", sep = ' ', skipLines = 9, header = "#"))
21 .rename(f{"E / keV" <- "Energy/keV"})
22 .mutate(f{float: "Phi" ~ `Phi` / max(`Phi`) * 100.0})
23 .filter(f{float: c"E / keV" <= 10.0})
24 var fullDf = bind_rows([("Axion-Electron flux", gaeDf),
25 ("Setups", dfPPHe)],
26 id = "Type")
27 .select("Type", "E / keV", "Phi", "Transmission", "Setup")
28 # `Transmission` contains many `VNull` values, math w/ `Value`
29 .mutate(f{Value -> Value: "Transmission" ~ `Transmission` * (%~ 100.0)})
30 ggplot(fullDf.filter(f{string: `Type` != "Axion-Electron flux"}),
31 aes(x = "E / keV", y = "Transmission")) +
32 geom_line(aes(color = "Setup")) +
33 geom_line(aes(x = "E / keV", y = "Phi"),
34 data = fullDf.filter(f{string: `Type` == "Axion-Electron flux"})) +
35 scale_y_continuous("Transmission / %", secAxis = secAxis(name = "Axion flux / a.u.")) +
36 legend_position(x = 0.88, y = 0.1) +
37 #xlim(0.0, 3.0, outsideRange = "drop") +
38 ggtitle("Comparison of He filled beamline (1 bar, 293 K) and 10 µm window") +
39 ggsave("window_he_transmissions_axion_flux.pdf", width = 853, height = 480)
40
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41 transmissionsPlusSpectrum()

The resulting combined plot is shown in fig. 13.

Comparison of He filled beamline (1 bar, 293 K) and 10 µm window
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Figure 13: Comparison of three different possible setups. Either the beamline is filled with 4He at $P =
1bar, T = 293.15K and has a length of 5m (red) or 7.5m (green) or the beamline is under vacuum and
a 10µm C3H6 polypropylene window (blue) is used. In addition the expected solar axion-electron flux is
shown in black in arbitrary units.

2.6 First pressure value for He filling
The next thing to consider is to calculate the first pressure (or rather density) setting, which would be
taken on a 4He run. That is, from the ”2.2”, that is the pressure (density) equivalent for ma = 0.0228 eV,
that pressure is sought, which results in a FWHM of the same value as the declining vacuum sensitivity
at that mass.

So we have to calculate two things:

1. the full vacuum sensitivity curve

2. determine the density (pressure) that corresponds to the mγ , which produces the resonance curve
(cf. fig. 7) that lines up with the vacuum curve at its FWHM on the left edge.

Let’s start with 1.

2.6.1 Full vacuum sensitivity curve

Analytically the vacuum conversion probability can be derived from the expression eq. 14 by simplifying
q for mγ → 0 and Γ = 0:
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Let’s implement this and see if it reproduces the known plot.

1 proc vacuumConversionProb(m_a: float, length = 10.0): float =
2 ## calculates the conversion probability in BabyIAXO for the given axion
3 ## mass `m_a`
4 # both `g_agamma` and `B` only scale the absolute value `P`, does not matter
5 const g_agamma = 1.0 #1e-11
6 const B = 4.5 # T, actually don't know the real number right now
7 # convert length in `m` to `eV`
8 let L = length / 1.97e-7 # m
9 let E_a = 4.2 # keV mean value for Primakoff spectrum

10 let q = momentumTransfer(m_gamma = 0.0, m_a = m_a)
11 let term1 = pow(g_agamma * B * L / 2.0, 2)
12 let term2 = pow(sin(q * L / 2.0) / (q * L / 2.0), 2.0)
13 result = term1 * term2
14

15 proc vacuumConversionProbApprox(m_a: float, length = 10.0): float =
16 ## approximates the vacuum conversion probability to second order of taylor
17 ## expansion (4th power of `sin^2` argument)
18 # both `g_agamma` and `B` only scale the absolute value `P`, does not matter
19 const g_agamma = 1.0 #1e-11
20 const B = 4.5 # T, actually don't know the real number right now
21 # convert length in `m` to `eV`
22 let L = length / 1.97e-7 # m
23 let E_a = 4.2 # keV mean value for Primakoff spectrum
24 let q = momentumTransfer(m_gamma = 0.0, m_a = m_a)
25 let term1 = pow(g_agamma * B * L / 2.0, 2)
26 let term2 = 1.0 - pow(q * L / 2.0, 2.0) / 3.0
27 result = term1 * term2
28

29 proc vacuumConvProbPlot(useApprox = false) =
30 ## generates the typical plot of the conversion probability in the range
31 ## 1 µeV to 1 eV for g_a,gamma = 1.0 (for simplicity)
32 # we use linspace so we have more fidelity where the curve is more interesting
33 let vacMasses = linspace(1e-6, 1.0, 1000)
34 var probs: seq[float]
35 var outname = ""
36 if not useApprox:
37 probs = vacMasses.mapIt(vacuumConversionProb(it))
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38 outname = "vacuum_conversion_prob.pdf"
39 else:
40 probs = vacMasses.mapIt(vacuumConversionProbApprox(it))
41 outname = "vacuum_conversion_prob_taylor.pdf"
42 let dfVac = seqsToDf({ "m_a / eV" : vacMasses,
43 "P_a,gamma" : probs})
44

45 ggplot(dfVac, aes("m_a / eV", "P_a,gamma")) +
46 geom_line() +
47 #geom_point() +
48 scale_x_log10() +
49 scale_y_log10() +
50 ggsave(outname)
51 vacuumConvProbPlot()
52 # The below results in negative values for the probability, which breaks the
53 # log log plot. Why negative from approximation?
54 #vacuumConvProbPlot(useApprox = true)

The resulting vacuum conversion probability plot is shown in fig. 14.
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Figure 14: Normal axion photon conversion probability in the BabyIAXO magnet assuming ga,γ = 1 in
the typical mass range. The behavior for higher masses is due to being off-resonance (qL > π) and is
usually not shown in the vacuum plots.

2.6.2 Determine the next pressure (density) step

Now starts the more complicated part of the calculation, namely 2.
It can be decomposed into a few parts:

• the vacuum curve

• a set of (mγ ,Γ, ρ), which defined the conversion probability with a buffer gas

29



• calculate the mass and conversion probability at the left edge of the FWHM of the buffer curve

• find ma of the vacuum curve for the P of the (ma, P ) point of the buffer curve

• calculate the distance mass distance between ma,vacuum at P and ma,left FHWM

• take absolute value of distance

• perform minimization of that distance. Minimum corresponds to desired density (pressure) point.

Let’s build this up in code then.

1 proc pressureToGammaMGamma(pressure: float): tuple[gamma, m_gamma: float] =
2 ## returns a tuple of the corresponding `gamma` and
3 ## `m_gamma` values associated with the pressure for BabyIAXO filled with
4 ## He.
5 result = (gamma: attenuationLength(pressure),
6 m_gamma: babyIaxoEffMass(pressure))
7

8 proc getDfVac(massRange: Option[tuple[low, high: float]]): DataFrame =
9 let r = if massRange.isNone: (low: 1e-6, high: 1.0) else: massRange.get

10 let vacMasses = linspace(r.low, r.high, 1000)
11 let vacProbs = vacMasses.mapIt(vacuumConversionProb(it))
12 result = seqsToDf({ "m_a / eV" : vacMasses,
13 "P_a->gamma" : vacProbs})
14 # echo result.pretty(50)
15

16 type
17 MassFit = object
18 discard
19 proc vacuumMassGivenProb(prob: float): float =
20 ## determines the mass corresponding to the given probability.
21 ## Since `P` even for the vacuum case is not really invertible,
22 ## we'll do it numerically.
23 proc probDiff(p0: seq[float], dummy: MassFit): float =
24 result = abs(vacuumConversionProb(p0[0]) - prob)
25 var opt = newNloptOpt[MassFit](LN_COBYLA, 1)
26 # hand the function to fit as well as the data object we need in it
27 var varStr = newVarStruct(probDiff, MassFit())
28 opt.setFunction(varStr)
29 let (params, minVal) = opt.optimize(@[0.01])
30 result = params[0]
31 opt.destroy()
32 echo vacuumMassGivenProb(1.5e15)
33

34 proc pressureGivenEffPhotonMass(m_gamma: float, T = 4.2): float =
35 ## calculates the inverse of `babyIaxoEffPhotonMass`, i.e. the pressure
36 ## from a given effective photon mass in BabyIAXO
37 result = m_gamma * m_gamma * T / 0.01988
38

39 template fwhmTail(name: untyped, op: untyped): untyped =
40 proc `name`(m_a: float, outputInfo = false,
41 massRange = none[tuple[low, high: float]]()):
42 tuple[m_as, probs: seq[float], mAtFwhm, pHalf: float] =
43 # calculate pressure corresponding to `m_a`
44 let pressure = pressureGivenEffPhotonMass(m_a)
45 # get gamma and m_gamma from pressure
46 let (gamma, m_gamma) = pressureToGammaMGamma(pressure)
47 doAssert abs(m_a - m_gamma) < 1e-4
48 let (m_as, probs) = calcConvProbCurve(gamma, m_gamma,
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49 pressure, massRange = massRange)
50 let (p, pResI) = fitToConvProb(gamma, m_gamma, pressure,
51 nameSuffix = "teststest", createPlot = true)
52 let fwhmVal = fwhm(pResI[2])
53 let mAtFwhm = `op`(pResI[1], fwhmVal / 2.0)
54 let pHalf = pResI[0] / 2.0
55 result = (m_as: m_as, probs: probs, mAtFwhm: mAtFwhm, pHalf: pHalf)
56 if outputInfo:
57 echo "Axion mass m_a = ", m_a, " eV"
58 echo "Pressure P = ", pressure, " mbar"
59 echo "Attenuation length Gamma = ", gamma
60 echo "Effective photon mass m_gamma = ", m_gamma, " eV"
61 echo "FWHM ", fwhmVal
62

63 fwhmTail(lhsFwhmTail, `-`)
64 fwhmTail(rhsFwhmTail, `+`)
65

66 proc massDifference(m_a, prob: float, cmpMass = none[float]()): float =
67 ## Given a conversion probability value at a certain mass, calculate the
68 ## mass difference between this value and the vacuum curve
69 var ma_cmp: float
70 if cmpMass.isNone:
71 ma_cmp = vacuumMassGivenProb(prob)
72 else:
73 let (m_as, probs, mAtFwhm, pHalf) = rhsFwhmTail(cmpMass.get)
74 ma_cmp = mAtFwhm
75 echo "using ", cmpMass
76 echo "Corresponding ma in vacuum ", ma_cmp, " for ", prob
77 result = abs(m_a - ma_cmp)
78

79 proc gasStepsPlot(massLhs, massRhs: tuple[name: string, m: float], title = "",
80 filterMass = none[tuple[low, high: float]]()) =
81 ## generates a plot showing the resonance curves for the two masses
82 ## (or one if one mass is 0.0). Compares it to the vacuum conversion
83 ## probability.
84 let (m_as, probs, mAtFwhm, pHalf) = lhsFwhmTail(massLhs.m, massRange = filterMass)
85 let dfLhs = seqsToDf({ "m_a / eV" : m_as,
86 "P_a->gamma" : probs,
87 })
88 echo "LHS = ", massLhs
89 echo "LHS P = ", pressureGivenEffPhotonMass(massLhs.m)
90 var dfComb: DataFrame
91 if massRhs.name.len == 0:
92 dfComb = bind_rows([("vacuum", getDfVac(filterMass)),
93 (massLhs.name, dfLhs)],
94 #("xline", dfDummy),
95 #("yline", dfDummy2),
96 id = "case")
97 else:
98 echo "RHS = ", massRhs
99 echo "RHS P = ", pressureGivenEffPhotonMass(massRhs.m)

100 let (m_Rhs, probsRhs, _, _) = rhsFwhmTail(massRhs.m, massRange = filterMass)
101 let dfRhs = seqsToDf({ "m_a / eV" : m_Rhs,
102 "P_a->gamma" : probsRhs,
103 })
104 dfComb = bind_rows([("vacuum", getDfVac(filterMass)),
105 (massRhs.name, dfRhs),
106 (massLhs.name, dfLhs)],
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107 id = "case")
108 if filterMass.isSome:
109 let fm = filterMass.get
110 dfComb = dfComb.filter(f{float: c"m_a / eV" >= fm.low and c"m_a / eV" <= fm.high})
111 var plt = ggplot(dfComb, aes("m_a / eV", "P_a->gamma", color = "case")) +
112 geom_line() +
113 scale_y_log10() +
114 ggtitle(title)
115 if filterMass.isNone:
116 plt = plt + scale_x_log10()
117 let n1 = massLhs.name.replace(" ", "_")
118 let n2 = massRhs.name.replace(" ", "_")
119 plt + ggsave(&"vacuum_helium_cutoff_{mAtFWHM}_{n1}_{n2}.pdf")
120

121

122 proc massDifferenceAtMass(m_a: float, createPlot = true,
123 outputInfo = false, cmpMass = none[float]()): float =
124 ## returns the pressure that corresponds to the mass that is required to
125 ## achieve a FWHM overlap between the vacuum curve and the buffer gas setup
126 # use `m_a` as start
127 # calculate buffer curve with this value
128 echo "Eff photon mass ", m_a
129 let (m_as, probs, mAtFwhm, pHalf) = lhsFwhmTail(m_a, outputInfo)
130 # find m_a of `pHalf` on vacuum curve
131 result = massDifference(mAtFwhm, pHalf, cmpMass)
132 if createPlot:
133 if cmpMass.isNone:
134 gasStepsPlot((name: "helium", m: m_a), massRhs = (name: "", m: 0.0))
135 else:
136 gasStepsPlot((name: "helium", m: m_a),
137 (name: "heliumRef", m: cmpMass.get))
138

139 proc findMassAtFwhm(m_a: float, cmpWithMassless = true): float =
140 ## performs minimization of `massDifferenceAtMass` to find the mass `m_a` at which
141 ## the FWHM of the buffer phase matches the vacuum line
142 proc findMin(p0: seq[float], dummy: MassFit): float =
143 if cmpWithMassless:
144 result = massDifferenceAtMass(p0[0])
145 else:
146 result = massDifferenceAtMass(p0[0], cmpMass = some(m_a))
147

148 var opt = newNloptOpt[MassFit](LN_COBYLA, 1, bounds = @[(1e-4, Inf)])
149 # hand the function to fit as well as the data object we need in it
150 var varStr = newVarStruct(findMin, MassFit())
151 opt.setFunction(varStr)
152 opt.xtol_rel = 1e-8
153 opt.ftol_rel = 1e-8
154 let (params, minVal) = opt.optimize(@[m_a])
155 result = params[0]
156 opt.destroy()
157

158 when true:
159 let mstep1 = findMassAtFwhm(babyIaxoVacuumMassLimit)
160 let mstep2 = findMassAtFwhm(mstep1, cmpWithMassless = false)

Finally generate the plots from the calculation:
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1 when true:
2 echo "\n\n------------------------------\n\n"
3 proc toPressureDiff(m1, m2: float, T = 4.2): float
4 let pdiffVacStep1 = toPressureDiff(mstep1, babyIaxoVacuumMassLimit)
5 gasStepsPlot((name: "1st He step", m: mstep1),
6 massRhs = (name: "", m: 0.0),
7 title = &"First buffer gas step; match at FWHM, ΔP = {pdiffVacStep1:.4f} mbar (@ 4.2 K)")
8 let pdiffFirst2Steps = toPressureDiff(mstep1, mstep2)
9 gasStepsPlot((name: "2nd He step", m: mstep2),

10 (name: "1st He step", m: mstep1),
11 title = &"First two He steps, each match at FWHM, ΔP = {pdiffFirst2Steps:.4f} mbar (@ 4.2 K)")

The first gas buffer step is shown in figure 15. We can see that we get the expected matching of the
first coherent curve with the dropping vacuum curve.

First buffer gas step; match at FWHM, ΔP = 0.0829 mbar (@ 4.2 K)
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Figure 15: Plot of the vacuum conversion probability depending on the axion mass for the vacuum case
and the first pressure step with 4He buffer gas, such that the two produce a ”best matching”, i.e. the
sensitivity does not drop below the value at the FWHM (= by a factor of 2 in probability). At 4.2K the
pressure is 0.1927mbar.

The first two helium steps are then shown in fig. 16. Again we see that the matching of the two
coherent curves is correct.

At 4.2K the first pressure step is at 0.1927mbar and the second at 0.3808mbar, meaning a difference
in pressure of 0.1881mbar.

Now let’s look at the same for the steps between two pressures at 1bar equivalent and 3bar equivalent.
For this calculate the mass that corresponds to these and take values for findMassAtFwhm.

To better present the information, let’s write a helper proc, which converts a difference in masses to
a difference in pressures:
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First two He steps, each match at FWHM, ΔP = 0.1881 mbar (@ 4.2 K)
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Figure 16: Plot of the vacuum conversion probability depending on the axion mass for the vacuum case
and the first two pressure steps with 4He buffer gas. We can see the mass difference achieved for the first
two steps. At 4.2K the first pressure step is at 0.1927mbar and the second at 0.3808mbar.

1 proc toPressureDiff(m1, m2: float, T = 4.2): float =
2 ## assuming two masses `m1` and `m2` in `eV`, converts the
3 ## mass difference to a corresponding pressure difference
4 ## at temperature `T`
5 result = abs(pressureGivenEffPhotonMass(m2, T = T) -
6 pressureGivenEffPhotonMass(m1, T = T))

1 # 1 bar
2 when true:
3 let mstep1Bar = findMassAtFwhm(m_gamma_1bar, cmpWithMassless = false)
4 let pdiff1bar = toPressureDiff(m_gamma_1bar, mstep1Bar)
5 gasStepsPlot((name: "Step 1", m: m_gamma_1_bar),
6 (name: "Step 2", m: mstep1Bar),
7 title = &"Two steps at 1 bar (@ 293 K) pressure, ΔP = {pdiff1bar:.4f} mbar (@ 4.2 K)",
8 filterMass = some((low: 0.22, high: 0.2999)))
9 #

10 ### 3 bar
11 let mstep3Bar = findMassAtFwhm(m_gamma_3bar, cmpWithMassless = false)
12 let pdiff3bar = toPressureDiff(m_gamma_3bar, mstep3Bar)
13 gasStepsPlot((name: "Step 1", m: m_gamma_3_bar),
14 (name: "Step 2", m: mstep3Bar),
15 title = &"Two steps at 3 bar (@ 293 K) pressure, ΔP = {pdiff3bar:.4f} mbar (@ 4.2 K)",
16 filterMass = some((low: 0.42, high: 0.48)))

The step difference near 1bar at T = 293.15K is shown in fig. 17. Here the pressure difference at
cryo temperature 4.2K is only
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Two steps at 1 bar (@ 293 K) pressure, ΔP = 0.1862 mbar (@ 4.2 K)
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Figure 17: Plot of the vacuum conversion probability depending on the axion mass for the vacuum case
and two pressure steps with 4He buffer gas at 1bar at T = 4.2K.

And in fig. 18 we see the same plot near the 3bar pressure equivalent.

Finally we still want to reproduce fig. 3 depending on the density instead of a pressure.

1 proc m_a_vs_density(pstart, pstop: float) =
2 let pressures = logspace(pstart.log10, pstop.log10, 1000)
3 let densities = pressures.mapIt(density(it, 4.2))
4 let masses = pressures.mapIt(babyIaxoEffMass(it)) # corresponding masses
5 # convert both seqs to a dataframe
6 let ref1Bar = density(1000, 293.15)
7 let df1bar = seqsToDf({"� / g/cm^3" : @[ref1Bar, ref1Bar], "m_a / eV" : @[1e-2, 1.0]})
8 let ref3Bar = density(3000, 293.15)
9 let df3bar = seqsToDf({"� / g/cm^3" : @[ref3Bar, ref3Bar], "m_a / eV" : @[1e-2, 1.0]})

10 let refVacLimit = density(pressureGivenEffPhotonMass(babyIaxoVacuumMassLimit))
11 let dfVacLimit = seqsToDf({"� / g/cm^3" : @[refVacLimit, refVacLimit], "m_a / eV" : @[1e-2, 1.0]})
12 let df = seqsToDf({"� / g/cm^3" : densities, "m_a / eV" : masses})
13 let dfComb = bind_rows([("ma vs �", df),
14 ("1 bar @ 293 K", df1bar),
15 ("3 bar @ 293 K", df3bar),
16 ("Vacuum limit", dfVacLimit)],
17 id = "Legend")
18 ggplot(dfComb, aes("� / g/cm^3", "m_a / eV", color = "Legend")) +
19 geom_line() +
20 scale_x_log10() +
21 scale_y_log10() +
22 ggtitle("Sensitive axion mass in eV depending on helium density in g / cm^3") +
23 ggsave("m_a_vs_density.pdf")
24

25 when true:
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Two steps at 3 bar (@ 293 K) pressure, ΔP = 0.1855 mbar (@ 4.2 K)
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Figure 18: Plot of the vacuum conversion probability depending on the axion mass for the vacuum case
and two pressure steps with 4He buffer gas at 3bar at T = 4.2K.

26 m_a_vs_density(pressureGivenEffPhotonMass(babyIaxoVacuumMassLimit) * 0.9,
27 pressureGivenEffPhotonMass(mstep3Bar) * 1.1)

The final plot then is the dependency of the axion mass ma against the 4He density in the magnet.
This is shown in fig. 19.

3 Notes
3.1 TODO Evaluate if this mγ results in the same value as our fn
According to Theodoros’ PhD thesis: https://cds.cern.ch/record/1607071/files/CERN-THESIS-2012-349.
pdf (page 186) the effective photon mass can also be written as:

mγ = 28.77

√
Z

A
ρ (58)

where Z is the atomic number, ρ the density of the gas and A the atomic mass of the buffer gas.
”Distinguishing axion models at IAXO, Jaeckel & Thompson:” https://iopscience.iop.org/article/

10.1088/1475-7516/2019/03/039/meta mentions another approximation for mγ , namely:

mγ ≈

√
0.02

p(mbar)
T (K)

eV (59)

which seems to be quite a bit closer to our assumption than Theodors’.
J. Gallan’s PhD thesis seems to be the original source for the equation, https://arxiv.org/pdf/

1102.1406.pdf.
He arrives at it from the relation that the electron number density can be written as:

ne = Z
NA

M
ρ (60)

I should take a pen and paper and write it down. Continue on with the conversion probability.
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Sensitive axion mass in eV depending on helium density in g / cm^3
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Figure 19: Sensitive axion mass ma depending on the density of 4He buffer gas in the magnet. Also
added are the lines corresponding to the vacuum limit and the 1bar and 3bar lines (at 4.2K).

3.2 Momentum transfer units
Momentum transfer has units of momentum.

Momentum has natural units of:

3.3 Attenuation length, momentum transfer and length
This section was to attempt to fix the plot in fig. 20.

So in principle: exp−ΓL has to be unit 1, i.e. Γ has to be unit of inverse length (which is by
definition true of course, since it’s defined as an inverse length). However, in the units we actually use
for our numbers, that ain’t quite the case. We use SI units for L = 10m and have Γ from:

Γ = ρ

(
µ

ρ

)
(61)

Now, we use ρ in units of g/cm3, while the NIST data supplies µ/ρ in cm2/g. What does this mean? It
means that

[Γ] =
[
g/cm3

] [
cm2/g

]
(62)

[Γ] =
[
cm−1

]
(63)

ref eq 14.
This means two things for us. One: For all products of Γ · L we have to apply a correction factor of

100 to convert from cm to m, but maybe more importantly, we have to consider what this means for the
denominator of the second term of the conversion probability, namely:

q2 + Γ2/4 (64)

Do we have to fix one of these?
The same about the products holds also for the argument to the cosine:

cos(q · L) (65)

Since we have by definition q in eV and
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Axion conversion probability for Γ = 137.90, m_γ = 0.26
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Figure 20: Example of the axion conversion probability at a pressure of P = 14.3345mbar (corresponds
to 1bar at room temperature). This should reproduce fig. 5. That apparently does not work yet.

4 Appendix appendix
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Axion conversion probability for Γ = 2.72e-09, m_γ = 2.60e-01
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Figure 21: Example of the axion conversion probability at a pressure of P = 14.3345mbar (corresponds
to 1bar at room temperature) for the full IAXO length 20m. This is equivalent to the plot of fig. 5,
although we see the influence of the cos term a lot more.
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Axion conversion probability for Γ = 8.15e-09, m_γ = 4.51e-01
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Figure 22: Example of the axion conversion probability at a pressure of P = 43.0034mbar (corresponds
to 3bar at room temperature) and a magnet length of 20m. This plot should be exactly the equivalent
to the 3bar plot of the IAXO gas phase study paper.
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